Octanuclear Heterometallic Clusters with Rhombic Dodecahedral Cores. The Synthesis, Structural Characterization, and Properties of the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{n-1}$ Clusters (M = Mo, n = 3, R = Me, OMe, NMe₂; M = W, n = 3, R = Me; M = Mo, n= 4, R = Me, OMe, COMe). Precursors for Synthetic Analogues for the Fe/Mo/S Site in Nitrogenase

S. A. Al-Ahmad, A. Salifoglou, M. G. Kanatzidis, W. R. Dunham, and D. Coucouvanis*

Received May 22, 1989

The synthesis and characterization of new members of the $[Fe_6S_6(p-RPhO)_6]^{3-}$ prismane series (R = OMe, N(Me)₂, COMe) and of the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{n-1}$ adducts (M = Mo, n = 3, R = Me, OMe, NMe₂; M = W, n = 3, R = Me; M = Mo, n = Mo, = 4, R = Me, OMe, COMe) are described. The crystal and molecular structures of $(Et_4N)_3[Fe_6S_6(p-OMePhO)_3]$ (1), $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$ (II), $(Et_4N)_3[Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]$ (III), and $(Et_4N)_4[Fe_6S_6(p-COMePhO)_6-K_1]_2$ $[Mo(CO)_3]_2$ (IV) are described in detail. I crystallizes in the monoclinic space group P_2_1/n with cell dimensions a = 14.699(6) Å, b = 12.008 (3) Å, c = 44.026 (18) Å, $\beta = 91.77$ (3)°, and Z = 4. II crystallizes in the triclinic space group $P\bar{I}$ with cell dimensions a = 12.581 (3) Å, b = 13.0511 (2) Å, c = 14.8404 (4) Å, $\alpha = 93.93$ (2)°, $\beta = 89.96$ (3)°, $\gamma = 116.087$ (2)°, and Z = 1. III crystallizes in the triclinic space group $P\bar{1}$ with cell dimensions a = 12.352 (2) Å, b = 13.402 (4) Å, c = 14.375 (4) Å, $\alpha = 95.35$ (2)°, $\beta = 93.81$ (2)°, $\gamma = 63.27$ (2)°, and Z = 1. IV crystallizes in the triclinic space group $P\bar{1}$ with cell dimensions a = 12.238 (4) Å, b = 13.030 (5) Å, c = 18.564 (9) Å, $\alpha = 92.80$ (3)°, $\beta = 106.73$ (4)°, $\gamma = 114.88$ (3)°, and Z = 1. Intensity data for I-IV were collected on a four-circle computer-controlled diffractometer with use of the θ -2 θ scan technique for II-IV and the ω scan technique for I. The structures were solved by conventional or direct-method techniques on 3410, 3253, 4336, and 3338 reflections for I-IV, respectively (for $I > 3\sigma(I)$). The structures were refined by full-matrix least-squares techniques (464 parameters for I, 468 parameters for II, 425 parameters for III, and 496 parameters for IV, to final R values of 0.071 (I), 0.047 (II), 0.054 (III), and 0.054 (IV). Complex I contains the $(Fe_6S_6)^{3+}$ core, complexes II and III contain the $(Mo_2Fe_6S_6)^{3+}$ and $(W_2Fe_6S_6)^{3+}$ cores, respectively, and complex IV contains the $(Mo_2Fe_6S_6)^{2+}$ core. Coordination of the M(CO)₃ units to the $(Fe_6S_6)^{n+}$ central cages of II-IV results in an elongation of the latter along the idealized δ -fold axes. As a result of this elongation, the Fe-S bonds parallel to the $\bar{6}$ -fold axes in II-IV are in the range from 2.338 (6) to 2.348 (4) Å and are significantly longer than the corresponding bonds in I at 2.309 (7) Å. The Mo-S distance in II at 2.614 (5) Å is slightly shorter than that in IV at 2.646 (8) Å, but similar to the W-S distance in III at 2.590 (3) Å. The Fe-M distances in II-IV are 2.99 (2), 2.96 (2), and 3.00 (2) Å. The electronic, cyclic voltammetric, and Mössbauer properties of the $\{Fe_6S_6(p-RPhO)_6\}^{p-1}$ prismanes and the $\{Fe_6S_6(p-RPhO)_6\}^{p-1}$ $RPhO_{6}[M(CO)_{3}]_{2}/r^{-}$ adducts are affected by the type of para substituents and are discussed in detail. In the trianionic $Mo(CO)_{3}$ adducts, strongly electron-releasing para substituents on the terminal p-RPhO ligands, such as -NMe2, facilitate the dissociation of one of the $Mo(CO)_3$ fragments and generation of the $[Fe_6S_6(p-RPhO)_6[Mo(CO)_3]]^{3-}$ heptametallic clusters.

Introduction

Recent extensive studies on the Fe/Mo protein¹ component of nitrogenase and the nitrogenase cofactor² (FeMo(co)) have revealed in considerable detail the nature of a unique Fe/Mo/Saggregate intimately involved in biological N₂ fixation. In parallel with advances in understanding the nature of the Fe/Mo/S center in nitrogenase, a considerable interest in the basic coordination chemistry of Fe/Mo/S clusters has emerged with the goal of obtaining at least a structural analogue for this center. The stoichiometric and structural constraints imposed on the acceptability of synthetic analogues have been broadly defined from analytical and spectroscopic data on the Fe/Mo protein and the FeMo(co).

Originally the FeMo(co) was reported to contain iron, molybdenum, and sulfide in a 8:1:6 atomic ratio.² Subsequent analytical determinations gave Fe:Mo ratios of 7:1³ and $(8.2 \pm$ 0.4):1.4 The most recent analytical data on functional FeMo(co), isolated by a mild procedure, indicates⁵ a Fe:Mo ratio of $(5 \pm$ 0.5):1. A similar fluctuation in analytical results also is apparent in several determinations of sulfur content and S:Mo ratios as low as 4:1³ and as high as 9:1 or 8:1⁴ have been reported.

Spectroscopic studies on the Fe/Mo protein by EPR and Mossbauer spectroscopy have shown six iron atoms each in a distinctive magnetic environment coupled to an overall $S = \frac{3}{2}$ spin system⁶⁻⁸ and electron nuclear double resonance (ENDOR) studies suggest one molybdenum per spin system.⁸ The ⁵⁷Fe signals (five or six doublets) observed in the ENDOR spectra⁸ possibly indicate an asymmetric structure for the Fe/Mo/S aggregate in which the iron atoms roughly can be grouped into two sets of trios, each set having very similar hyperfine parameters.

Extended X-ray absorption fine structure (EXAFS) studies on the Fe/Mo/S aggregate in nitrogenase have made available structural data that are essential in design of synthetic analogue clusters. Analyses of the Mo K-edge EXAFS of both the Fe/Mo protein and the FeMo(co)⁹ have shown as major features three to four sulfur atoms in the first coordination sphere at 2.35 Å and two to three iron atoms further out from the Mo atom at ~ 2.7 Å. The Fe EXAFS of the FeMo $(co)^{10}$ shows the average iron

⁽¹⁾ Orme-Johnson, W. H. Annu. Rev. Biophys. Biophys. Chem. 1985, 14,

Orme-Jonnson, W. H. Annu. Rev. Biophys. Biophys. Chem. 1705, 14, 419-459.
 Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 3249.
 (a) Burgess, B. K.; Jacogs, D. B.; Stiefel, E. I. Biochim. Biophys. Acta 1980, 614, 196. (b) Newton, W. E.; Burgess, B. K.; Stiefel, E. I. In Molybdenum Chemistry of Biological Significance; Newton, W. E., Otsuka, S., Eds.; Plenum Press: New York, 1980; p 191. (c) Burgess, B. K.; Newton, W. E. In Nitrogen Fixation; Mueller, A., Newton, W. E., Eds.; Plenum Press: New York, 1983; p 83.
 Nelson, M. I. Levy, M. A.; Orme-Johnson, W. H., Proc. Natl. Acad.

⁽⁴⁾ Nelson, M. J.; Levy, M. A.; Orme-Johnson, W. H. Proc. Natl. Acad. Sci. (U.S.A.) 1983, 80, 147.

⁽⁵⁾ Orme-Johnson, W. H.; Wink, D. A.; Mclean, P. A.; Harris, G. S.; True, A. E.; Hoffman, B.; Munck, E.; Papaefthymiou, V. Recl. Trav. Chim. Pays-Bas 1987, 106, 299.

⁽⁶⁾ Rawlings, J.; Shah, V. K.; Chisnell, J. R.; Brill, W. J.; Zimmerman, R.; Munck, E.; Orme-Johnson, W. H. J. Biol. Chem. 1978, 253, 1001.

⁽⁷⁾ Huynh, B. H.; Munck, E.; Orme-Johnson, W. H. Biochim. Biophys. Acta 1979, 527, 192.

^{(8) (}a) Hoffman, B. M.; Roberts, J. E.; Orme-Johnson, W. H. J. Am. Chem. Soc. 1982, 104, 860. (b) Hoffman, B. M.; Venters, R. A.; Roberts, J. E.; Nelson, M.; Orme-Johnson, W. H. J. Am. Chem. Soc. 1982, 104, 4711.

⁽a) Cramer, S. P.; Gillum, W. D.; Hodgson, K. O.; Mortenson, L. E.; Stiefel, E. I.; Chisnell, J. R.; Brill, W. J.; Shah, V. K. J. Am. Chem. Soc. 1978, 100, 4630. (b) Cramer, S. P.; Hodgson, K. O.; Gillum, W. O.; Mortenson, L. E. J. Am. Chem. Soc. 1978, 100, 3398.

⁽¹⁰⁾ Antonio, M. R.; Teo, B. K.; Orme-Johnson, W. H.; Nelson, M. J.; Groh, S. E.; Lindahl, P. A.; Kauzlarich, S. M.; Averill, B. A. J. Am. Chem. Soc. 1982, 104, 4703.

environment to consist of 3.4 ± 1.6 S(Cl) atoms at 2.25 (2) Å, 2.3 ± 0.9 Fe atoms at 2.66 (3) Å, 0.4 \pm 0.1 Mo atoms at 2.76 (3) Å and $1.2 \pm 1.0 \text{ O(N)}$ atoms at 1.81 (7) Å. In the most recent Fe EXAFS study of the FeMo(co),¹¹ a second shell of Fe atoms was observed at a distance of 3.75 Å.

Collectively, the available structural and spectroscopic data on the Fe/Mo/S aggregate indicate an asymmetric arrangement of the Fe atoms relative to the Mo, in a cluster that may contain as structural features the FeS2Mo rhombic units. The Fe EXAFS data further suggest that about half of the iron atoms are at close proximity to the Mo atom (at 2.76 Å) and terminal ligation to the Fe atoms may involve O or N donor ligands.

Prior to 1978, only one Fe/Mo/S compound was known to contain the FeS₂Mo structural unit. In this compound, $Cp_2Mo(S-n-Bu)_2FeCl_2$, the Mo and Fe atoms are bridged by two n-BuS⁻ ligands.¹² Since then, numerous Fe/Mo/S complexes have been synthesized, and without exception they all contain FeS₂Mo units. The majority of these complexes have been obtained by either the use of the MoS_4^{2-} anion as a ligand in $MoS_4^{2-}/Fe(L)_n$ ligand-exchange reactions¹³ or by spontaneous self assembly reactions that employ MoS_4^{2-} as one of the reagents.^{14,15} In general, oligonuclear Fe/Mo/S complexes are obtained by the former method and polynuclear clusters containing the Fe₃MoS₄ units are obtained by the latter method.

More recently, a synthetic approach that utilizes preformed Fe/S clusters and Mo reagents other than MoS₄²⁻ has been used effectively in the synthesis of $[Fe_6S_6L_6(Mo(CO)_3)_2]^{n-16}$ (from $[Fe_6S_6L_6]^{3-}$ and $(CH_3CN)_3Mo(CO)_3)$, of $[MoOFe_5S_6(CO)_{12}]^{2-17a}$ (from $[Fe_2S_2(CO)_6]^{2-}$ and $MoOCl_3 \cdot 2THF$), and of $[MoOFe_6S_6(CO)_{16}]^{2-,17b}$ With the exception of $[MoOFe_6S_6^{-}$ $(CO)_{16}]^{2-}$, none of the Fe/Mo/S complexes isolated thus far shows a Fe:Mo ratio close to the approximate 6:1 ratio found in the nitrogenase cofactor. However, there exist Fe/Mo/S clusters that conceivably can serve as precursors for the synthesis of new clusters with a 6:1 Fe: Mo ratio and the simultaneous presence of acceptable structural features. One such class of clusters are the ${Fe_6S_6}$ - $L_6[Mo(CO)_3]_2$ ⁿ⁻ anions¹⁶ (n = 3, 4; L = Cl, ArO).

In this paper, we report in detail on the synthesis and characterization of the $[Fe_6S_6(p-RPhO)_6]^{n-1}$ prismanes (R = MeO, n = 3; R = NMe₂, n = 3; R = COMe, n = 3), the {Fe₆S₆(p- $RPhO_{6}[M(CO)_{3}]_{2}^{n}$ adducts (M = Mo, R = MeO, n = 3, 4; M = Mo, R = Me, n = 3, 4; M = W, R = Me, n = 3; M = Mo, $R = NMe_2$, n = 3; M = Mo, AR = COMe, n = 4) and the structural characterization of the Et₄N⁺ salts of [Fe₆S₆(p-MeO- $PhO_{6}]^{3-}$ (I) and the $[Fe_{6}S_{6}(p-RPhO)_{6}(M(CO)_{3})_{2}]^{n-}$ adducts (M = Mo, R = MeO, n = 3 (II); M = W, R = Me, n = 3 (III), M = Mo, R = COMe, n = 4, (IV)).

Experimental Section

(1) Synthesis. All procedures were carried out in an inert atmosphere by using a Vacuum Atmospheres Dri-Lab glovebox filled with prepurified nitrogen. The chemicals in this research other than solvents were used as purchased. Acetonitrile (CH₃CN) was distilled from calcium hydride (CaH_2) before use. *p*-(Dimethylamino)phenol was prepared as described in the literature.¹⁸ Diethyl ether and methylene chloride (CH₂Cl₂) were

- therein. Holm, R. H.; Simhon, E. D. In *Molybdenum Enzymes*; Spiro, T. G.,
- (14)Ed.; Wiley-Interscience: New York, 1985; Chapter 1 and references therein.
- (15)Christou, G.; Garner, C. D.; Mabbs, F. E.; King, T. J. J. Chem. Soc., Chem. Commun. 1978, 740.
- (a) Coucouvanis, D.; Kanatzidis, M. G. J. Am. Chem. Soc. 1985, 107, 5005. (b) Kanatzidis, M. G.; Coucouvanis, D. J. Am. Chem. Soc. 1986, 108, 337. (c) Salifoglou, A.; Kanatzidis, M. G.; Coucouvanis, D. J. Chem. Soc., Chem. Commun. 1986, 559. (d) Coucovanis, D.; Salifoglou, A.; Kanatzidis, M. G.; Simopoulos, A.; Kostikas, A. J. Am. Chem. Soc. 1987, 109, 3807.
 (17) (a) Bose, K. S.; Lamberty, P. E.; Kovacs, J. E.; Sin, E.; Averill, B. A. Polyhedron 1986, 5, 393-398. (b) Eldredge, P. A.; Bryan, R. F.; Sinn,
- E.; Averill, B. A. J. Am. Chem. Soc. 1988, 10, 5573.

distilled after being refluxed with CaH_2 for ~ 2 h. Sodium aryloxides were obtained by the reaction of sodium metal dispersion and the appropriate phenols in diethyl ether under nitrogen.

(2) Physical Methods. Visible and ultraviolet spectra were obtained on a Cary Model 219 spectrophotometer. Proton NMR spectra were obtained on a Bruker 300-MHz Pulse FT NMR spectrometer with Me₄Si as internal standard. Chemical shifts are reported in parts per million (ppm). The following convention is used whenever isotropically shifted NMR spectra are reported. A positive sign is assigned to a resonance appearing downfield from Me₄Si. A negative sign is given to absorptions occurring upfield from Me₄Si.

Electrochemical measurements were performed with a PAR Model 173 potentiostat/galvanostat and a PAR Model 175 universal programmer. The electrochemical cell used had platinum working and auxiliary electrodes. As reference electrode, a saturated calomel electrode was used. All solvents used in the electrochemical measurements were properly dried and distilled, and tetra-n-butylammonium perchlorate (Bu₄NClO₄), was used as the supporting electrolyte. Normal concentrations used were ~ 0.001 M in electroanalyte and 0.1 M in supporting electrolyte. Purified argon was used to purge the solutions prior to the electrochemical measurements.

Preparation of Compounds. The procedure for the synthesis of one member of the $(Et_4N)_{5}[Fe_{6}S_{6}(ArO)_{6}]$, series (Ar = p - MePh) has been described elsewhere.¹⁹ Pure crystalline compounds also are obtained in very good yields with Ar = p-EtPh and 2,4,6-Me₃Ph by using an identical procedure.

Tris(tetraethylammonium) Hexakis(p-methoxyphenolato)hexakis- $(\mu_3$ -sulfido)hexaferrate(3II,3III), (Et₄N)₃[Fe₆S₆(p-OMePhO)₆] (I). To a solution of 1.0 g (0.85 mmol) of (Et₄N)₃Fe₆S₆Cl₆ in 30 mL of CH₃CN was added 0.75 g, (5.14 mmol), of p-OMePhONa under continuous stirring. An immediate color change occurred upon mixing, from greenish brown to reddish brown. After 5 min of stirring, the reaction mixture was filtered to remove NaCl, and to the filtrate was added 120 mL of diethyl ether. When the mixture was allowed to stand overnight, a black microcrystalline solid was deposited. The product was collected by filtration, washed twice with diethyl ether, and dried under vacuum. The yield was 1.24 g (87.8%). Anal. Calcd for $Fe_6S_6O_{12}N_3C_{66}H_{102}$ (MW = 1657.2): Fe, 20.22; S, 11.60; N, 2.54; C, 47.83; H, 6.16. Found: Fe, 19.55; S, 11.02; N, 2.34; C, 46.66; H, 6.34.

Tris(tetraethylammonium) Hexakis(p-(dimethylamino)phenolato)hexakis(μ_3 -sulfido)hexaferrate(3II,3III), (Et₄N)₃[Fe₆S₆[p-N(Me)₂PhO]₆]. An amount of $(Et_4N)_3Fe_6S_6Cl_6$ (1.00 g, 0.85 mmol) and p-N-(Me)₂PhONa (0.82 g, 5.16 mmol) were stirred in 30 mL of CH₃CN for 5 min. The resulting reaction mixture was filtered to remove NaCl, and to the filtrate was added 120 mL of diethyl ether. When the mixture was allowed to stand overnight, a microcrystalline solid was deposited. The product was collected by filtration, washed twice with ether, and dried under vacuum. Yield: 1.25 g (84.5%). Anal. Calcd for $Fe_6S_6O_6N_9$ -C₇₂H₁₂₀ (MW 1735.5): Fe, 19.38; S, 11.07; N, 7.27; C, 49.83; H, 6.92. Found: Fe, 18.70; S, 10.48; N, 6.90; C, 48.15.

 $Tris(tetraethylammonium) Hexakis(p-acetylphenolato)hexakis(\mu_3$ sulfido)hexaferrate(3II,3III), (Et₄N)₃[Fe₆S₆(p-COMePhO)₆]. This compound was obtained in 84.8% yield by using a procedure identical with the one described above for the *p*-OMe derivative. No good (acceptable) analysis could be obtained for this cluster; however, the contact-shifted ¹H NMR spectrum in CD₃CN solution (11.33 ppm (m-H), 1.28 ppm (o-H), and 3.4 ppm (p-COMe)) is characteristic for the Fe_6S_6 core.

Tris(tetraethylammonium) Hexakis(p-methylphenolato)hexakis(μ_4 $sulfido) hexaferrate (3II, 3III) - Bis (tricarbonylmolybdenum (0)), (Et_4N)_3 - Bis (tricarbonylmolybben (0)), (Et_4N$ ${Fe_6S_6(p-MePhO)_6[Mo(CO)_3]_2}$. To a 50 mL propionitrile solution of 0.80 g (0.51 mmol) of $[Et_4N]_3[Fe_6S_6(p-MePhO)_6]$ was added 0.54 g (1.78 mmol) of solid $(CH_3CN)_3Mo(CO)_3^{20}$ The mixture was heated to ~90 °C for ca. 10 min. A color change to dark purple-red was observed, and the hot solution was filtered. After the solution was cooled to ambient temperature, 120 mL of diethyl ether was added to the filtrate, and when this mixture was allowed to stand for 4 h, a microcrystalline product formed and was isolated (0.85 g, 87% yield). This material is analytically pure; however, it can be recrystallized from CH₃C-H₂CN or CH₃CN solutions upon the addition of diethyl ether and in the presence of $(CH_3CN)_3Mo(CO)_3$. Anal. Calcd for $Mo_2Fe_6S_6O_{12}N_3-C_{72}H_{102}$ (MW 1920): Mo, 10.00; Fe, 17.5; S, 10.00; N, 2.18; H, 5.30;

- (18) Weber, R.; Mueller, H. R. (Eprova AG). Gen. Offen. 2,649,229 (Cl. CO7C91/44), Nov 24, 1977; Swiss Appl. Nov. 14, 1975
- (19) Kanatzidis, M. G.; Salifoglou, A.; Coucouvanis, D. Inorg. Chem. 1986, 25, 2460.
- (a) Tate, D. P.; Knipple, W. R.; Augl, J. M. Inorg. Chem. 1962, 1, 433.
 (b) Ross, B. L.; Grasseli, J. G.; Ritchey, W. M.; Kaesz, H. D. Inorg. Chem. 1963, 2, 1023.
 (c) Stolz, I. W.; Dobson, G. R.; Sheline, R. K. Inorg. Chem. 1963, 2, 323. (20)

⁽¹¹⁾ Arber, J. M.; Flood, A. C.; Garner, C. D.; Hasnain, S. S.; Smith, B. E. J. Phys. Colloq. 1986, 47, 1159.
(12) Cameron, T. S.; Prout, C. K. Acta Crystallogr., Sect. B 1972, B28, 453.
(13) Coucouvanis, D. Acc. Chem. Res. 1981, 14, 201-209 and references

C, 45.0. Found: Mo, 10.16; Fe, 18.03; S, 9.91; N, 2.29; H, 5.33; C, 44.82. X-ray powder pattern *d* spacings (Å): 14.14 (vs), 12.03 (vs), 11.12 (vs), 9.21 (m), 7.45 (vw), 6.73 (vw), 6.26 (m), 5.45 (vw), 5.28 (vw), 4.55 (vw), 4.26 (w), 4.18 (w), 3.92 (vw), 3.64 (vw), 3.47 (vw), 3.25 (w), 3.02 (vw), 2.95 (vw), 2.78 (vw), 2.68 (vw), 2.61 (vw), 2.54 (vw), 2.37 (vw), 2.33 (vw), 2.23 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 1.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.04 (vw), 1.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.95 (vw), 2.20 (vw), 2.14 (vw), 2.04 (vw), 1.95 (vw), 2.95 (vw), 2.20 (vw), 2.14 (vw), 2.94 (vw), 1.95 (vw), 2.95 (vw), 2.14 (vw), 2.95 (vw

Tris(tetraethylammonium) Hexakis(p-methoxyphenolato)hexakis-(μ_4 -sulfido)hexaferrate(3II,3III)-Bis(tricarbonylmolybdenum(0)), (Et₄N)₃[Fe₆S₆(p-OMePhO)₆[Mo(CO)₃]₂] (II). (i) From (Et₄N)₃[Fe₆S₆-(p-OMePhO)₆]. To a solution of 1.2 g (0.72 mmol) (Et₄N)₃Fe₆S₆(p-OMePhO)₆]. To a solution of 1.2 g (0.72 mmol) (Et₄N)₃Fe₆S₆(p-OMePhO)₆] in 30 mL of CH₃CN was added 0.66 g (2.18 mmol) of (CH₃CN)₃Mo(CO)₃ with continuous stirring. The resulting reaction mixture was heated at 60 °C for 20 min. During that time, the color changed from brown-red to purple. The solution was filtered while hot and allowed to cool to room temperature. Subsequently, 120 mL of diethyl ether was added. When this mixture was allowed to stand for several hours, a black crystalline solid formed. The crystals were collected by filtration, washed twice with ether, and dried under vacuum. Yield: 1.3 g (88%). Anal. Calcd for Mo₂Fe₆S₆O₁₈N₃N₃C₇₂H₁₀₂ (MW = 2017): Mo, 9.92; Fe, 16.67; S, 9.52; N, 2.08; C, 42.86; H, 5.06. Found: Mo, 9.51; Fe, 17.05; S, 9.54; N, 1.96; C, 42.50; H, 4.84.

(ii) From $(Et_4N)_2Fe_4S_4(p-OMePhO)_4$. To a solution of $(Et_4N)_2$ -[Fe₄S₄(p-OMePhO)₄] (1.0 g, 0.91 mmol) in 30 mL of CH₃CN was added 0.42 g (1.39 mmol) of $(CH_3CN)_3Mo(CO)_3$ with continuous stirring. The resulting reaction mixture was heated at 60 °C for 20 min. The solution was then allowed to cool down to room temperature. Subsequently, it was filtered, and to the filtrate was added 100 mL of diethyl ether. When the mixture was allowed to stand for several hours, a crystalline solid formed. It was collected by filtration, washed with ether, and dried under vacuum. Yield: 0.95 g (80%) based on the amount of Fe. The UV/vis spectrum of the product in CH₃CN, the ¹H NMR spectrum, and the infrared spectrum all confirmed the identity of the product as $(Et_4N)_3|Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2|$.

(iii) From $(Et_4N)_2[Fe_2S_2(p-OMePhO)_4]$. To a solution of 1.00 g, (1.08 mmol), of $(Et_4N)_2[Fe_2S_2(p-OMePhO)_4]$ in 30 mL of CH_3CN was added 1.00 g (3.30 mmol) of $(CH_3CN)_3Mo(CO)_3$ under continuous stirring. The resulting solution was heated at 60 °C for 20 min. During that time, the color of the reaction mixture changed from brownish purple to purple. The solution was then allowed to cool to room temperature. Subsequently, it was filtered, and to the filtrate was added 120 mL of diethyl ether. When the mixture was allowed to stand for several hours, a crystalline solid formed. It was collected by filtration, washed twice with ether, and dried under vacuum. The yield was 0.40 g (60%), based on the amount of Fe. The UV/vis spectrum in CH_3CN , the ¹H NMR spectrum and the infrared spectrum confirmed the identity of the product as $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$.

Tris(tetraethylammonium) Hexakis(p-(dimethylamino)phenolato)hexakis(μ_4 -sulfido)hexaferrate(3II,3III)-Bis(tricarbonylmolybdenum(0)), (Et₄N)₃[Fe₆S₆(p-NMe₂PhO)₆[Mo(CO)₃]₂]. To a solution of 1.0 g of (Et₄N)₃[Fe₆S₆(p-NMe₂PhO)₆], (0.58 mmol), in 30 mL of acetonitrile was added 0.53 g (1.75 mmol) of (CH₃CN)₃Mo(CO)₃ under continuous stirring. After the mixture was stirred for 30 min at room temperature, the color became purple-blue. The resulting solution was filtered, and to the filtrate was added 120 mL of diethyl ether. When this mixture was allowed to stand for 12 h, a black crystalline solid formed. The solid was collected, washed with ether several times, and dried under vacuum. Yield: 1.0 g (80%). Anal. Calcd for Mo₂Fe₆S₆O₁₂N₉C₇₈H₁₂₀ (MW = 2095): Mo, 9.17; Fe, 16.04; S, 9.17; N, 6.02; C, 44.70; H, 5.73. Found: Mo, 9.76; Fe, 16.9; S, 9.19; N, 5.67; C, 44.88; H, 5.50.

Tris(tetraethylammonium) Hexakis(*p*-methylphenolato)hexakis(μ_4 -sulfido)hexaferrate(3II,3III)-Bis(tricarbonyltungsten(0)), (Et₄N)₃-{Fe₆S₆(*p*-MePhO)₆[W(CO)₃]₂} (III). To a 40 mL CH₃CN solution of 0.60 g (0.38 mmol) of (Et₄N)₃[Fe₆S₆(*p*-MePhO)₆] was added, slowly with stirring, a warm solution of 0.60 g, (1.53 mmol), of (CH₃CN)₃W-(CO)₃¹⁹ in 30 mL of CH₃CN. The reaction mixture was heated to ~80 for 30–35 min, and the color changed to a dark purple red. The solution was allowed to cool to ambient temperature and then filtered. To the filtrate was added ~5 mL of tetrahydrofuran and 12 mL of diethyl ether were added. When this mixture was allowed to stand for 48 h, a microcrystalline product formed and was isolated (0.50 g, 62% yield). The compound was found to be X-ray isomorphous to the Mo analogue. Anal. Calcd for W₂Fe₆S₆O₁₂N₃C₇₂H₁₀₂ (MW = 2096): W, 17.56; Fe, 16.03; S, 9.16; N, 2.00; H, 4.87; C, 41.22. Found: W, 17.61; Fe, 17.09; S, 9.46; N, 2.35; H, 5.26; C, 41.12.

Tetrakis(tetraethylammonium) Hexakis(*p*-acetylphenolato)hexakis-(μ_4 -sulfido)hexaferrate(4II,2III)-Bis(tricarbonylmolybdenum(0)), (Et₄N)₄[Fe₆S₆(*p*-COMePhO)₆[Mo(CO)₃]₂} (IV). A solution of (Et₄N)₃[Fe₆S₆(*p*-COMePhO)₆] (1.13 mmol) was prepared in situ by the reaction of (Et₄N)₃(Fe₆S₆Cl₆) (1.3 g, 1.13 mmol) with *p*-COMePhONa (1.1 g, 7.0 mmol) in 30 mL of CH₃CN. To this solution, after filtration to remove the NaCl byproduct, was added solid (CH3CN)3Mo(CO)3 (1.1 g, 3.4 mmol). After the mixture was heated to ca. 60 °C for ~40 min the resulting greenish brown solution was filtered and allowed to cool to ambient temperature. Upon addition of diethyl ether (30 mL), with the mixture kept standing for 1 h, a black powder appeared in suspension. This powder was isolated by filtration, and the filtrate was allowed to stand overnight at ambient temperature. The black crystals that formed were isolated, washed with ether, and dried (0.9 g). An additional 0.2 g of crystalline product was obtained upon recrystallization (CH₃CN/ ether) of the initially isolated black powder. The overall yield was 1.1 g (57%), based on the (Et₄N)₃(Fe₆S₆Cl₆) used. Anal. Calcd for Mo₂-Fe₆S₆O₁₈N₄C₈₆H₁₂₂ (MW = 2219): Mo, 8.66; Fe, 15.15; S, 8.66; N, 2.52; C, 46.53; H, 5.50. Found: Mo, 8.68; Fe, 15.0; S, 8.65; N, 2.75; C, 46.65; H, 5.55. The same compound, (Et₄N)₄|Fe₆S₆(p-COMe-PhO)₆[Mo(CO)₃]₂], can be obtained in 50% yields by using either $(Et_4N)_2[Fe_4S_4(p-COMePhO)_4]$ or $(Et_4N)_2[Fe_2S_2(p-COMePhO)_4]$ in otherwise identical synthetic procedures.

Tetrakis(tetraethylammonium) Hexakis(p-methoxyphenolato)hexakis(μ_4 -sulfido)hexaferrate(4II,2III)-Bis(tricarbonylmolybdenum(0)), (Et₄N)₄|Fe₆S₆(p-OMePhO)₆[Mo(CO)₃]₂]. To a solution of 1.0 g (0.5 mmol) of (Et₄N)₃|Fe₆S₆(p-OMePhO)₆[Mo(CO)₃]₂] in 30 mL of acetonitrile was added a solution of 0.22 g (1.52 mmol) of (Et₄N)BH₄ in 5 mL acetonitrile under continuous stirring. After the mixture was stirred for 30 min, the color changed from purple to brown. The solution was then filtered, and to the filtrate was added 120 mL of diethyl ether. When this mixture was allowed to stand for several hours, a black microcrystalline solid formed. The product was collected by filtration, washed twice with ether, and dried under vacuum. Yield: 0.85 g (79.9%). Anal. Calcd for Mo₂Fe₆S₆O₁₈N₄C₈₀H₁₂₂ (MW = 2147): Mo, 8.93; Fe, 15.61; S, 8.96; N, 2.61; C, 44.74; H, 5.74. Found: Mo, 8.3; Fe, 16.1; S, 8.5; N, 2.7; C, 44.1; H, 5.5.

Tetrakis(tetraethylammonium) Hexakis(p-methylphenolato)hexakis-(μ_4 -sulfido)hexaferrate(4II,2III)-Bis(tricarbonylmolybdenum(0)), (Et₄N)₄{Fe₆S₆(p-MePhO)₆[Mo(CO)₃]₂}. To a solution of 1.0 g (0.52 mmol) of (Et₄N)₃{Fe₆S₆(p-MePhO)₆[Mo(CO)₃]₂} was added a solution of 0.2 g (1.86 mmol) of (Et₄N)BH₄ in 5 mL of acetonitrile. After the mixture was stirred for 30 min, the color changed from purple to brown. The resulting reaction mixture was then filtered, and to the filtrate was added 100 mL of diethyl ether. When this mixture was allowed to stand for 10 h, a black microcrystalline solid formed. The product was collected by filtration, washed twice with diethyl ether, and dried under vacuum. Yield: 0.98 g (91.8%). Anal. Calcd for Mo₂S₆O₁₂N₄C₈₀H₁₂₂ (MW = 2050): Mo, 9.37; Fe, 16.39; S, 9.37; N, 2.73; C, 46.83; H, 5.95. Found: Mo, 8.98; Fe, 15.9; S, 10.33; N, 2.73; C, 46.3; H, 5.73.

X-ray Diffraction Measurements

(a) Collection of Data. Single crystals of $(Et_4N)_3[Fe_6S_6(p-OMe PhO_{3}$ (I), $(Et_{4}N)_{3}[Fe_{6}S_{6}(p-OMePhO)_{6}[Mo(CO)_{3}]_{2}]$ (II), $(Et_{4}N)_{3}$ - $PhO_{6}[Mo(CO)_{3}]_{2}$ (IV) were obtained by the slow diffusion of diethyl ether into acetonitrile solutions of the complexes. A single crystal of each complex was mounted in a thin-walled capillary under nitrogen and sealed to protect from air and moisture. The X-ray crystallographic data for I, II, and IV were obtained on a Nicolet P3/F four-circle computer-controlled diffractometer. The data for III were collected on a Syntex P21 four-circle computer-controlled diffractometer. A detailed description of the instrument and the data acquisition procedures have been given previously.²¹ Intensity data were obtained by using graphitemonochromatized Mo K α radiation over one-fourth of the reciprocal lattice sphere for I and half of the reciprocal lattice sphere for II-IV. Because of the rapid decomposition of the crystal of III in the X-ray beam, at ambient temperature, the intensity data were collected at -84 °C by passing a stream of evaporating nitrogen over the crystal.

For each of the four structures, the unit cell was determined from 12 well-centered reflections whose x and y coordinates were obtained from random orientation photographs. Accurate cell parameters were obtained from a least-squares fit of the angular settings $(2\theta, \omega, \phi, \chi)$ of 25 machine-centered reflections with 2θ values between 20° and 40°. Details concerning crystal characteristics and X-ray diffraction methodology are shown in Table I.

(b) Reduction of Data. The raw data were reduced to net intensities, estimated standard deviations were calculated on the basis of counting statistics, Lorentz-polarization corrections were applied, and equivalent reflections were averaged. The estimated standard deviation of the structure factor was taken as the larger of that derived from counting statistics and that derived from the scatter of multiple measurements.

The least-squares program used minimizes $\sum w(|\Delta F|)^2$. The weighting function used throughout the refinement of the structure gives zero

Table I.Summary of Crystal Data, Intensity Collection, and Structure Refinement of $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6]$ (I), $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$ (II), $(Et_4N)_3[Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]$ (III), and $(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$ (IV)

	I	П	III	ĪV
formula	$Fe_6S_6O_{12}N_3C_{66}H_{102}$	$Mo_2Fe_6S_6N_3O_{18}C_{72}H_{102}$	W ₂ Fe ₆ S ₆ N ₃ O ₁₂ C ₇₂ H ₁₀₂	Mo ₂ Fe ₆ S ₆ N ₄ O ₁₈ C ₈₀ H ₁₂₂
MW	1657	2017	2096	2219
a, Å	14.699 (6)	12.581 (3)	12.352 (2)	12.238 (4)
b, Å	12.008 (3)	13.0511 (2)	13.402 (4)	13.030 (5)
c, Å	44.03 (2)	14.8404 (4)	14.375 (4)	18.564 (9)
α , deg	90.00	93.93 (2)	95.35 (2)	92.80 (3)
β , deg	91.77 (3)	89.96 (2)	93.81 (2)	106.73 (4)
γ , deg	90.00	116.087 (2)	63.27 (2)	114.88 (3)
$V, Å^3; Z$	7767 (5); 4	2182 (1); 1	2115 (1); 1	2522 (2); 1
$d_{\text{calcd}}, \text{g/cm}^3$	1.43	1.53	1.65	1.46
$d_{\rm obsd}, {\rm g/cm^3}$	1.41ª	1.51ª	1.60 ^b	1.43 ^a
space group	$P2_1/n$	PĪ	PĪ	РĨ
cryst dimens, mm	$0.29 \times 0.55 \times 0.05$	$0.09 \times 0.26 \times 0.62$	$0.28 \times 0.13 \times 0.56$	$0.15 \times 0.42 \times 0.08$
μ , cm ⁻¹	13.3	14.4	39.3	12.2
radiation	Μο Κα ^ζ	Μο Κα ^ε	Μο Κα ^ε	Μο Κα ^ε
data collecd	$2\theta = 0-45^{\circ}$	$2\theta = 0-40^{\circ}$	$2\theta = 0-45^{\circ}$	$2\theta = 0-45^{\circ}$
no. of data used $(F_o^2 > 3\sigma(F_o^2))$	3410	3253	4336	3338
no. of params	464	468	425	496
R ^d	0.071	0.047	0.054	0.054
R_{w}^{d}	0.071	0.047	0.056	0.054

^aObtained by flotation in a CCl₄/hexane mixture. ^bObtained by flotation in a CHBr₃/pentane mixture. ^c $\lambda = 0.71069$ Å. ^d $R = \sum |F_o| - |F_c|/|F_o|$. ^e $R_w = [\sum w(|F_o| - |F_c|)^2 / \sum w|F_o|^2]^{1/2}$.

Figure 1. Structure and labeling of the $[Fe_6S_6(p-OMePhO)_6]^{3-}$ anion in I. The *p*-OMePh rings have been omitted for clarity. Thermal ellipsoids as drawn by ORTEP represent the 50% probability surfaces.

weight to those reflections with $F^2 < 3\sigma(F^2)$ and $w = 1/\sigma^2(F)$ to all others,²² where $\sigma^2(F) = \sigma_1^2(F) + [abs(g)]F^2$ (g = 0.0002). No corrections for secondary extinction were applied to the data sets for I-IV. The atomic scattering factors²³ except those for hydrogen were corrected by adding real and imaginary terms to account for the effects of anomalous dispersion.²⁴ The spherical hydrogen scattering factor tables of Stewart et al.²⁵ were used.

Due to the small μ values (Table I) and the small size of the crystals, no absorption corrections were applied. The refinement calculations were carried out on the University of Michigan Amdahl 800 computer by using the locally adapted SHELX76 crystallographic program package.²⁶

(c) Determination of Structures. The structures of I-IV were determined by using data sets to 2θ maxima of 40° . Three dimensional Patterson synthesis maps along with the direct-methods routine SOLV of the SHELXTL 84 package of crystallographic programs were employed to locate Fe, Mo, or W atoms. Subsequent difference Fourier maps were used to locate the sulfur atoms and the other non-hydrogen atoms in the

- (23) Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, A24, 390.
- (24) Cromer, D. T.; Liberman, D. J. J. Chem. Phys. 1970, 53, 1891.
 (25) Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42, 3175
- (26) SHELXTL Package of Crystallographic Programs; Nicolet XRD Corp.: Fremont, CA.

Figure 2. Structure and labeling of the anions in the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{n-1}$ clusters in II (M = Mo, n = 3, R = OMe), in III (M = W, n = 3, R = Me), and in IV (M = Mo, n = 4, R = COMe). The *p*-RPh rings have been omitted for clarity. Thermal ellipsoids as drawn by ORTEP represent the 50% probability surfaces.

asymmetric units. With four molecules in the unit cell of I the $[Fe_6S_6(p-OMePhO)_6]^{3-}$ anion and all three of the Et_4N^+ counterions in the asymmetric unit are situated on general positions. The unit cells of II-IV are triclinic (space group PI), and each contains one formula unit per unit cell (Table I). As a result, in the structures of II-IV, the anions $[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]^{3-}$, $\{Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]^{3-}$, and $\{Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]^{4-}$ are required by symmetry to reside on crystallographic inversion centers. The two tetraethyl-ammonium cations in the asymmetric unit of IV are located on general positions, and their structures are unexceptional. One of the cations in the other one is sitting on a center of symmetry (0, 0, 0.5). As a result the latter cations are subject to a 2-fold disorder.

(d) Crystallographic Results. The final atomic positional parameters for $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6]$ (I), $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo-(CO)_3]_2]$ (II), $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[W(CO)_3]_2]$ (III), and $(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$ (IV) with standard deviations are shown in Tables II-V). Intermolecular distances and angles are given in Table VI. The numbering scheme for the anion in I is shown in Figure 1. That for the anions in II-IV is shown in Figure 2.

Table II. Fractional Atomic Coordinates^{*a*} and Equivalent Isotropic Thermal Parameters for the Non-Hydrogen Atoms in $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6]$ (I)

atom	x	<u>y</u>	z	U, Å ²	atom	x	у	Z	U, Å ²
Fel	0.4061 (2)	0.1114 (3)	0.1553 (1)	0.046	C27	0.0929 (14)	0.3487 (18)	0.1756 (5)	0.049
Fe2	0.1667 (2)	0.1090 (3)	0.1166 (1)	0.046	O10	-0.0290 (12)	0.5996 (16)	0.1979 (4)	0.097
Fe3	0.3354 (2)	-0.1272 (3)	0.1029 (1)	0.043	C28	-0.0261 (21)	0.6707 (27)	0.1716 (7)	0.128
Fe4	0.2267 (2)	0.1195 (3)	0.1764 (1)	0.047	C29	0.0046 (17)	-0.2156 (22)	0.0910 (5)	0.060
Fe5	0.1614 (2)	-0.1228 (3)	0.1242 (1)	0.046	C30	-0.0178 (14)	-0.1114 (19)	0.0768 (4)	0.050
Fe6	0.3975 (2)	-0.1156 (3)	0.1636 (1)	0.044	C31	-0.0843 (16)	-0.1120 (21)	0.0526 (5)	0.066
S 1	0.2171 (4)	-0.0220 (5)	0.0841 (1)	0.045	C32	-0.1272 (16)	-0.2043 (22)	0.0429 (5)	0.059
S2	0.2864 (4)	0.2118 (5)	0.1358 (1)	0.049	C33	-0.1079 (16)	-0.2986 (21)	0.0553 (5)	0.063
S 3	0.4523 (4)	-0.0234 (5)	0.1220 (1)	0.048	C34	-0.0389 (18)	-0.3121 (22)	0.0790 (6)	0.079
S 4	0.3465 (4)	0.0193 (5)	0.1962 (1)	0.045	O 11	-0.1955 (12)	-0.2101 (15)	0.0200 (4)	0.090
S5	0.2816 (4)	-0.2241 (5)	0.1439 (1)	0.048	C35	-0.2174 (17)	-0.1071 (23)	0.0078 (5)	0.084
S 6	0.1098 (4)	0.0088 (6)	0.1567 (1)	0.049	C36	0.5499 (15)	-0.2666 (19)	0.1694 (5)	0.045
01	0.5017 (11)	0.2075 (12)	0.1637 (3)	0.061	C37	0.5391 (16)	-0.3206 (19)	0.1433 (5)	0.060
02	0.0826 (11)	0.2138 (14)	0.1015 (3)	0.074	C38	0.5994 (17)	-0.3940 (21)	0.1310 (5)	0.068
O3	0.3720 (10)	-0.2276 (12)	0.0728 (3)	0.066	C39	0.6806 (19)	-0.4061 (22)	0.1453 (6)	0.075
04	0.1813 (10)	0.2146 (12)	0.2057 (3)	0.056	C40	0.6970 (16)	-0.3592 (22)	0.1720 (5)	0.072
05	0.0728 (10)	-0.2260 (13)	0.1111 (3)	0.062	C41	0.6343 (16)	-0.2929 (19)	0.1838 (5)	0.056
06	0.4905 (10)	-0.2028 (13)	0.1819 (3)	0.057	O12	0.7517 (14)	0.4744 (18)	0.1360 (5)	0.125
C1	0.5662 (18)	0.2364 (22)	0.1856 (6)	0.072	C42	0.7474 (26)	-0.5044 (34)	0.1099 (9)	0.174
C2	0.5715 (15)	0.1828 (19)	0.2139 (5)	0.061	NI	0.4010 (12)	0.4998 (16)	0.2274 (3)	0.051
C3	0.6389 (17)	0.2068 (20)	0.2325 (5)	0.065	C43	0.3742 (16)	0.4172 (20)	0.2024 (5)	0.064
C4	0.6997 (19)	0.2872 (23)	0.2271 (6)	0.083	C44	0.3965 (15)	0.4604 (18)	0.1696 (5)	0.062
C5	0.6958 (15)	0.3487 (18)	0.1999 (5)	0.058	C45	0.5036 (17)	0.5020 (23)	0.2292 (5)	0.079
C6	0.6251 (16)	0.3235 (19)	0.1795 (5)	0.054	C46	0.5410 (18)	0.5747 (22)	0.2560 (6)	0.090
07	0.7663 (13)	0.3194 (15)	0.2489 (4)	0.097	C47	0.3609 (17)	0.6092 (22)	0.2227 (5)	0.069
C7	0.8379 (22)	0.3892 (28)	0.2420 (7)	0.128	C48	0.2621 (19)	0.6142 (25)	0.2168 (6)	0.101
C8	0.0222 (14)	0.2208 (18)	0.0783 (5)	0.041	C49	0.3629 (16)	0.4493 (21)	0.2564 (5)	0.071
C9	-0.0483 (15)	0.2963 (19)	0.0788 (5)	0.051	C50	0.4001 (20)	0.3372 (24)	0.2660 (6)	0.110
C10	-0.1082 (16)	0.3135 (20)	0.0534 (5)	0.066	N2	0.2577(13)	0.4767 (16)	0.0556 (4)	0.067
CII	-0.0917 (16)	0.2439 (20)	0.0270(5)	0.062	C51	0.2970 (16)	0.5538 (20)	0.0315(5)	0.065
C12	-0.0232 (15)	0.1741 (18)	0.0251(5)	0.056	C52	0.3455 (18)	0.4931 (25)	0.0062 (6)	0.101
C13	0.0341(16)	0.1584(19)	0.0519(5)	0.068	C53	0.1877(17)	0.4025 (21)	0.0422 (5)	0.073
08	-0.1590 (11)	0.2610(13)	0.0031(4)	0.072	054	0.1039(19)	0.4574(22)	0.0266(6)	0.100
C14	-0.1410 (16)	0.2031(20)	-0.0248(5)	0.070	055	0.2204(16)	0.5558(19)	0.0797(5)	0.061
CIS	0.42/9(16)	-0.2091 (18)	0.0492(5)	0.045	056	0.1761(16)	0.4993(22)	0.1060(5)	0.078
	0.3915(10)	-0.1586(20)	0.0242(5)	0.071	057	0.3304(16)	0.4005(20)	0.0707(5)	0.065
C17	0.4433(17)	-0.1551 (18	-0.0030(5)	0.061	0.58	0.4092(20)	0.4604(23)	0.0846(6)	0.104
C18	0.5290(15)	-0.18/4(19)	-0.0023(5)	0.055	IN 3	0.7711(14)	0.0333(10)	0.1343(5)	0.075
C19	0.5078(15)	-0.2307(19)	0.0244(5)	0.060	C 59	0.7817(21)	-0.0606(27)	0.1120(7)	0.108
C20	0.5138(15)	-0.2402(18)	0.0495(5)	0.049	C60	0.0904(20)	-0.1306(20)	0.1067(6)	0.109
C21	0.5894(11)	-0.1807(13)	-0.0267(4)	0.076	C61	0.8600(19)	0.0918(23)	0.1340(0)	0.083
C21	0.5547(17) 0.1274(14)	-0.1235(22)	-0.0332(5)	0.083	C62	0.8091 (19)	0.1893(24) 0.1004(25)	0.13/1(0)	0.103
C22	0.12/4 (14) 0.1070 (14)	0.3043(18)	0.2025(5)	0.041	C63	0.0900 (19)	0.1094(23) 0.1592(29)	0.1243(0)	0.099
C23	0.10/9(14)	0.30/3(19)	0.2287(3)	0.052	C64	0.7011 (29)	-0.1382(38)	0.0930(10)	0.227
C24	0.0330(13)	0.,4017(18)	0.2257(5)	0.055	C65	0.7457 (21)	-0.0111(29)	0.1037(7)	0.117
C25	0.0210(10)	0.3033(23)	0.1995(3)	0.008	000	0.8197 (28)	-0.0850 (34)	0.1/08 (8)	0.185
C20	0.0407(13)	0.4422(19)	0.1/20(3)	0.058					

^aCalculated standard deviations are indicated in parentheses.

Results and Discussion

Synthesis. The new $[Fe_6S_6(p-RPhO)_6]^{3-}$ prismanes (R = MeO; NMe₂; COMe) can be obtained as described previously¹⁹ for the *p*-Me analogue. The hydrolytic instability of these molecules becomes more pronounced with the highly electron-releasing -OMe and -NMe₂ para substituents. The synthesis of the $[Fe_6S_6L_6[M(CO)_3]_2]^{n-}$ adducts (*n* = 3, 4) is accomplished readily by the reaction of the (CH₃CN)₃M(CO)₃ complexes with the (Fe₆S₆L₆)³⁻ prismanes (eq 1).

$$[Fe_{6}S_{6}(ArO)_{6}]^{3-} + 2(CH_{3}CN)_{3}Mo(CO)_{3} \rightarrow [Fe_{6}S_{6}(ArO)_{6}[Mo(CO)_{3}]_{2}]^{3-} (1)$$

The complexes are extremely sensitive to oxygen and moisture and traces of moisture in the reaction mixture preclude the isolation of crystalline solids. The formation of the p-OMe prismane 2:1 adduct requires heating of the reaction mixture for 15 min at ~ 60 °C. No heating is required for the p-NMe₂ adduct which forms at ambient temperature within 15 min. This shows the enhanced reactivity of the phenoxy prismane with the p-Me₂NPhO⁻ terminal ligands, which may be attributed to the exceptional electron-releasing characteristics of the p-Me₂N group.

In addition to the need for anaerobic, moisture-free conditions in the synthesis, the isolation of pure $\{Fe_6S_6(ArO)_6[Mo(CO)_3]_2\}^{\mu}$ adducts also depends on (a) the 3-/4- reduction potential of the ${Fe_6S_6(ArO)_6[Mo(CO)_3]_2}^{3-}$ clusters and (b) the relative stabilities of the 1:1 vs the 2:1 adducts. As discussed previously,²⁷ the $(CH_3CN)_3M(CO)_3$ reagents also can serve as reducing agents when the 3-/4- reduction potential of the {Fe₆S₆(ArO)₆[Mo- $(CO)_{3}_{2}^{3-}$ adducts is more positive than -0.25 V. The 3-/4- redox couples for the $\{Fe_6S_6L_6[M(CO)_3]_2\}^{n-}$ clusters $(L = p-RPhO^-)$ are greatly affected by the nature of the para substituents (vide infra). With electron-releasing R groups such as -Me or -OMe, the redox couples are found at potentials more negative than -0.25 V, and consequently, the trianionic adducts are obtained readily. With the electron-withdrawing -COMe as a para substituent, the 3-/4- couple is found at -0.16 V, and as a result, the 3- adduct can be reduced by the $(CH_3CN)_3M(CO)_3$ reagent. Under these circumstances, only the reduced tetraanionic adduct can be obtained in pure form, using an appropriate excess of $(CH_3CN)_3M(CO)_3$. A similar situation has been encountered in the synthesis of the $\{Fe_6S_6X_6[Mo(CO)_3]_2\}^{4-}$ adducts.²⁷ When stoichiometric amounts of $(CH_3CN)_3M(CO)_3$ are allowed to react with the $(Fe_6S_6L_6)^{3-}$ prismanes $(L = p-RPhO^-, Cl^-, Br^{-27})$, only

⁽²⁷⁾ Coucouvanis, D.; Salifoglou, A.; Kanatzidis, M. G.; Dunham, W. R.; Simopoulos, A.; Kostikas, A. Inorg. Chem. 1988, 27, 4066-4077.

Table III. Fractional Atomic Coordinates^{*a*} and Equivalent Isotropic Thermal Parameters for the Non-Hydrogen Atoms in $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$ (II)

atom	x	У	Ζ	$U, Å^2$
Mol	-0.1653 (1)	-0.1815(1)	-0.1215 (0)	0.049
Fel	0.1021 (1)	-0.0513(1)	-0.1178(1)	0.051
Fe2	-0.1336(1)	0.0551 (1)	-0.0701(1)	0.053
Fe3	-0.1120(1)	-0.1647(1)	0.0743(1)	0.051
SI	-0.2344(2)	-0.0942(2)	0.0743(1)	0.051
\$2	0.2544(2) 0.0026(2)	-0.2017(2)	-0.0316(1)	0.052
S2 S2	-0.0107(2)	0.2017(2)	-0.1752(1)	0.052
01	0.0197(2)	-0.0978(2)	-0.1752(1)	0.052
	-0.1804(3)	-0.0678(3)	-0.2000(4)	0.070
0^2	-0.2347(3)	0.1031(3)	-0.1203(4)	0.077
CV1	-0.1852(7)	-0.2952(5)	0.1338(3)	0.088
CAI O7	-0.1311(9)	-0.2389(9)	-0.2238 (8)	0.081
0/ CY2	-0.1120(8)	-0.3096 (8)	-0.2867 (6)	0.135
CX_2	-0.2832(9)	-0.3283(9)	-0.0888 (6)	0.065
	-0.3574(7)	-0.4168(6)	-0.0/12 (5)	0.089
CX3	-0.2960(9)	-0.1810 (8)	-0.1957 (6)	0.065
09	-0.3/40 (6)	-0.1863 (6)	-0.2390 (5)	0.097
CI	0.2534 (8)	-0.0304 (9)	-0.2709 (7)	0.064
C2	0.2982 (9)	0.0877 (10)	-0.2727 (6)	0.074
C3	0.3677 (9)	0.1492 (9)	-0.3413 (8)	0.081
C4	0.3929 (9)	0.0879 (13)	-0.4099 (8)	0.092
C5	0.3561 (13)	-0.0266 (12)	-0.4096 (8)	0.112
C6	0.2860 (11)	-0.0843 (9)	-0.3401 (8)	0.100
04	0.4625 (10)	0.1362 (9)	-0.4802 (7)	0.145
C7	0.4918 (20)	0.2400 (28)	-0.4921 (15)	0.301
C8	-0.2179 (9)	0.1642 (9)	-0.1975 (7)	0.074
C9	-0.1154 (10)	0.2629 (11)	-0.2073 (8)	0.090
C10	-0.1049 (12)	0.3284 (10)	-0.2788 (10)	0.110
C11	-0.1918 (16)	0.2948 (14)	-0.3434 (10)	0.121
C12	-0.2924 (14)	0.1953 (16)	-0.3343 (10)	0.132
C13	-0.3060 (10)	0.1325 (10)	-0.2631 (8)	0.094
O5	-0.1822 (14)	0.3549 (14)	-0.4189 (9)	0.235
C14	-0.1367 (45)	0.4397 (34)	-0.4351 (24)	0.569
C15	-0.2568 (9)	-0.3447 (7)	0.1974 (7)	0.058
C16	-0.3775 (11)	-0.4019 (9)	0.1813(7)	0.080
C17	-0.4521 (9)	-0.4583 (10)	0.2450 (9)	0.082
C18	-0.4100 (11)	-0.4637 (10)	0.3277 (8)	0.083
C19	-0.2904 (12)	-0.4091 (11)	0.3474 (7)	0.095
C20	-0.2136 (8)	-0.3507 (9)	0.2831 (8)	0.073
06	-0.4776 (9)	-0.5165 (9)	0.3995 (6)	0.131
C21	-0.6027 (15)	-0.5663 (13)	0.3847 (10)	0.140
N1	0.6853 (7)	0.2993 (6)	0.0626 (6)	0.078
C22	0.6635 (8)	0.1762 (8)	0.0655(7)	0.077
C23	0.5522(10)	0.1003(9)	0.1115(8)	0.094
C24	0.7985 (9)	0.3556 (8)	0.0128(9)	0.097
C25	0.8373 (11)	0.4792(10)	-0.0016(12)	0 148
C26	0.6971 (14)	0.3562(11)	0.0010(12) 0.1562(12)	0 131
C27	0.7974 (20)	0.3618(12)	0.11002(12) 0.2119(12)	0.167
C28	0.5846(10)	0.3091(10)	0.0141(11)	0.113
C29	0.5631 (11)	0.2582(11)	-0.0816(12)	0131
N2	0.0 (0)	0.0.002 (11)	0 5000 (0)	0 101
C30	-0.0354(22)	0.0756 (21)	0.4366 (16)	0.101
Cal	-0.0391 (22)	-0.1053 (20)	0.4300(10) 0.4412(15)	0.109
C32	-0.0029 (12)	0.1033(20) 0.1889(17)	0.4974(13)	0.099
C12	0.1300 (23)	0.1009(17) 0.0740(21)	0.4724(14) 0.5041(18)	0.202
C34	0.1377(23)	-0.0162(21)	0.30 + 1 (16) 0.4105 (16)	0.110
C25	0.0512(25) 0.1874(16)	0.0102(21) 0.0682(15)	0.4105 (10)	0.172
())	0.10/4(10)	0.0002 (15)	0.711/(12)	0.1/5

^aSee footnote *a* in Table II.

mixtures of the 1:1 and 2:1 adducts are obtained. The use of an excess of the $(CH_3CN)_3M(CO)_3$ reagent therefore is necessary for the isolation of pure 2:1 adducts free of 1:1 contaminants.

The octanuclear $Mo(CO)_3$ adducts can be obtained not only by using the preformed Fe_6S_6 units but also through the reorganization of smaller units. The reaction of either the dinuclear $[Fe_2S_2(ArO)_4]^2$ or the tetranuclear $[Fe_4S_4(ArO)_4]^2$ clusters in acetonitrile with $(CH_3CN)_3Mo(CO)_3$ affords the octanuclear clusters in an excellent yield (eqs 2 and 3). The possible function

$$3[Fe_2S_2(ArO)_4]^{2^-} + 5(CH_3CN)_3Mo(CO)_3 \rightarrow [Fe_6S_6(ArO)_6[Mo(CO)_3]_2]^{3^-,4^-} (2)$$

$$3[Fe_4S_4(ArO)_4]^{2^-} + 4(CH_3CN)_3Mo(CO)_3 \rightarrow [Fe_6S_6(ArO)_6[Mo(CO)_3]_3]^{3^-,4^-} (3)$$

2.4. 73(1	$c_{6}S_{6}(p-1)$ (10)		1)	
atom	x	У	Z	U, Å ²
W 1	0.3578 (0)	0.1719 (0)	0.1336 (0)	0.061
Fel	0.3766 (1)	-0.0379(1)	-0.1163(1)	0.069
Fe2	0.3702 (1)	-0.0521 (1)	0.0758 (1)	0.071
Fe3	0.3775(1)	0.1681 (1)	-0.0693 (1)	0.074
S 1	0.2595 (2)	0.1019 (2)	-0.0057 (3)	0.066
S2	0.5135 (2)	0.1935 (2)	0.0356 (2)	0.061
S3	0.5052 (2)	-0.0277 (2)	0.1792 (2)	0.068
01	0.2758 (7)	-0.0630 (6)	-0.2074 (6)	0.078
02	0.2663 (7)	-0.0927 (7)	0.1310 (7)	0.078
03	0.2833 (13)	0.2952 (8)	-0.1278 (9)	0.160
04	0.1699 (9)	0.4170 (8)	0.0945 (9)	0.108
05	0.4526 (9)	0.2709 (9)	0.3065 (8)	0.100
06	0.1582(9)	0.1800(9)	0.2590 (8)	0.103
CI	0.21/1(9)	-0.0046 (9)	-0.2822(9)	0.061
C2	0.1/29(10) 0.1116(10)	0.1090(9)	-0.2818(8)	0.050
	0.1110(10)	0.1044(10) 0.1120(10)	-0.3390(9)	0.060
C4	0.0921(10) 0.1356(12)	-0.0009(10)	-0.4393(9)	0.001
C6	0.1971(13)	-0.0009(12) -0.0583(10)	-0.3622(12)	0.094
\tilde{C}	0.0231(12)	0.0505(10) 0.1776(12)	-0.5227(12)	0.092
$\widetilde{C8}$	0.2802(9)	-0.1729(9)	0.5227 (10) 0.1858 (9)	0.057
Č9	0.1861(11)	-0.1567(12)	0.2426(10)	0.074
Č10	0.1992(14)	-0.2394(17)	0.2979(12)	0.113
C11	0.2967 (18)	-0.3402(15)	0.2972(13)	0.117
C12	0.3924 (13)	-0.3555 (11)	0.2431(12)	0.094
C13	0.3825 (12)	-0.2701 (11)	0.1899 (11)	0.088
C14	0.3109 (22)	-0.4318 (20)	0.3564 (19)	0.207
C15	0.2318 (9)	0.3489 (8)	-0.1988 (7)	0.044
C16	0.8903 (15)	-0.4108 (13)	0.1932 (10)	0.095
C17	0.9430 (16)	-0.4838 (15)	0.3084 (12)	0.113
C18	0.8423 (14)	-0.4562 (13)	0.3534 (10)	0.088
C19	0.7231 (19)	-0.3842 (18)	0.3158 (15)	0.143
C20	0.6756 (19)	-0.3338 (18)	0.2466 (15)	0.049
C21	0.8577 (33)	-0.5253 (32)	0.4474 (26)	0.122
C20′	0.9913 (27)	-0.4592 (25)	0.2318 (20)	0.088
C21′	1.0740 (27)	-0.5653 (26)	0.3803 (20)	0.092
C22	0.2412 (12)	0.3243 (11)	0.1091 (10)	0.078
C23	0.4179 (13)	0.2353 (11)	0.2434 (10)	0.079
C24	0.2340(12)	0.1738(10)	0.2108(15)	0.099
C25	0.0241(7)	0.2997(7)	0.0601(7)	0.003
C25	0.9250(9)	0.3132(10)	-0.0444(9)	0.002
C20	0.9464(14)	0.2808(13) 0.1783(8)	-0.0582(10)	0.063
C28	0.0400(9) 0.9598(11)	0.1783(8)	0.0000(9) 0.1128(10)	0.003
C29	0.9390(11) 0.8118(16)	0.3407(11)	0.1835(12)	0.115
C30	0.7141(27)	0.3324(13)	0.2316(20)	0.240
C31	0.7060 (11)	0.3662 (10)	0.0285(13)	0.097
C32	0.6608 (12)	0.4915 (11)	0.0321 (14)	0.109
N2	0.5000 (0)	0.0 (0)	0.5000 (0)	0.056
C33	0.4051 (19)	-0.0574 (18)	0.5060 (15)	0.054
C34	0.3775 (27)	-0.1037 (27)	0.4117 (22)	0.081
C35	0.6167 (21)	-0.0949 (20)	0.4583 (16)	0.064
C36	0.6745 (25)	-0.2035 (24)	0.5106 (22)	0.053
C37	0.4461 (24)	0.0881 (23)	0.4413 (19)	0.076
C38	0.3187 (30)	0.1798 (29)	0.4726 (24)	0.076
C39	0.4839 (20)	-0.0222 (19)	0.3952 (15)	0.055
C40	0.3842 (25)	-0.0694 (25)	0.3835 (21)	0.070

^aSee footnote a in Table II.

of the $M(CO)_3$ units as templates, for the assembly of $(Fe_2S_2L_2)^-$ fragments, has been discussed previously.²⁷

The purity of the adducts can be monitored by examination of the infrared spectra in the C \equiv O stretching frequency region. The presence of more than two strong, sharp vibrations in this region usually is diagnostic of mixtures. The *p*-Me and *p*-OMe 4- prismane adducts are obtained cleanly in reductions of the corresponding trianions with (Et₄N)BH₄ in CH₃CN solution.

Description of Structures. In all structures of the Et_4N^+ cations well separated from the anions and are unexceptional. Mean values and ranges for the C–N and C–C bond lengths in the Et_4N^+ cations are tabulated in a footnote in Table VI. All three prismane adducts, II–IV, crystallize in the triclinic space group PI. Each of the three triclinic unit cells contain one anion that is required

Table V. Fractional Atomic Coordinates^a and Equivalent Isotropic Thermal Parameters for the Non-Hydrogen Atoms in $(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$ (IV)

atom	x	<i>y</i>	z	U, Ų
Mol	0.2712 (1)	0.2972 (1)	0.4010(1)	0.050
Fe1	0.3468 (1)	0.5521 (1)	0.4211 (1)	0.050
Fe2	0.4005 (1)	0.3740 (1)	0.5724 (1)	0.050
Fe3	0.5462 (1)	0.3976 (1)	0.4172 (1)	0.050
S 1	0.4693 (3)	0.2841 (2)	0.4991 (2)	0.049
S2	0.4142 (3)	0.4658 (3)	0.3454 (2)	0.049
S3	0.2666 (3)	0.4431 (3)	0.5032 (2)	0.049
CXI	0.1174 (14)	0.2901 (12)	0.3250 (8)	0.071
0/	0.0250 (10)	0.2799 (10)	0.2809 (7)	0.121
CX2	0.1627 (12)	0.1/15 (12)	0.4336 (7)	0.064
08	0.08/3(9)	0.0870(8)	0.448/(6)	0.088
00	0.2608(14) 0.2506(11)	0.1839(12) 0.1134(0)	0.3243(8)	0.064
01	0.2306 (11)	0.1124(9) 0.5802(7)	0.2792(0) 0.2577(5)	0.102
	0.2200(7) 0.2178(13)	0.5893(7) 0.6459(12)	0.3377(3)	0.009
\tilde{C}^{1}	0.2170(13) 0.3244(13)	0.0437(12) 0.7399(14)	0.3041(8) 0.2985(8)	0.001
C3	0.3244(13) 0.3157(13)	0.8018(12)	0.2703(0)	0.074
Č4	0.2003(18)	0.0010(12) 0.7736(14)	0.2410(9) 0.1856(9)	0.070
Č5	0.0925 (15)	0.6821 (15)	0.1894(9)	0.084
Č6	0.0989 (13)	0.6192(12)	0.2454 (8)	0.076
Č7	0.1984 (22)	0.8445 (19)	0.1246 (13)	0.142
O4	0.0918 (16)	0.8158 (14)	0.0761 (9)	0.190
C8	0.3054 (19)	0.9456 (17)	0.1218 (11)	0.138
O2	0.3061 (8)	0.2731 (7)	0.6278 (5)	0.077
C9	0.3109 (15)	0.205 (14)	0.6747 (10)	0.071
C10	0.2023 (15)	0.1259 (15)	0.6822 (10)	0.114
C11	0.2007 (17)	0.0619 (15)	0.7413 (11)	0.107
C12	0.3084 (24)	0.0949 (17)	0.8001 (12)	0.131
C13	0.4224 (21)	0.1949 (19)	0.8020 (12)	0.133
C14	0.4187 (17)	0.2543 (14)	0.7426 (11)	0.107
C15	0.3227 (26)	0.0342 (22)	0.8648 (15)	0.166
05	0.4289 (20)	0.0567 (17)	0.9132 (11)	0.242
C16	0.2115 (26)	-0.0580 (23)	0.8688 (14)	0.204
03	0.5800(7)	0.3126(7)	0.3461(5)	0.069
C17	0.0153(11)	0.3348(12)	0.2866 (8)	0.058
C10	0.3697(13)	0.2391(12)	0.2312(9) 0.1708(0)	0.083
C19	0.0290(13)	0.2399(14) 0.2604(15)	0.1706(9) 0.1596(9)	0.094
C21	0.0940(13) 0.7153(12)	0.3094(13) 0.4626(12)	0.1380(8)	0.073
C_{22}	0.7155(12) 0.6760(11)	0.4020(12) 0.4447(12)	0.2104(9) 0.2733(8)	0.007
C23	0.7362(17)	0.3926(17)	0.2735(0)	0.000
06	0.7795(12)	0.4910(12)	0.0787(7)	0.132
C24	0.7313 (24)	0.2966 (21)	0.0396 (12)	0.221
NI	0.1785 (9)	0.8159 (8)	0.5054 (6)	0.064
C25	0.1837 (12)	0.7100 (12)	0.5316 (9)	0.091
C26	0.1044 (14)	0.6590 (15)	0.5828 (11)	0.123
C27	0.0438 (12)	0.7907 (12)	0.4594 (8)	0.076
C28	-0.0213 (13)	0.7002 (13)	0.3878 (9)	0.093
C29	0.2284 (14)	0.9130 (13)	0.5708 (9)	0.092
C30	0.3631 (15)	0.9580 (14)	0.6207 (10)	0.107
C31	0.2623 (13)	0.8492 (12)	0.4571 (9)	0.094
C32	0.2714 (16)	0.9519 (4)	0.4225 (11)	0.133
N2	0.2535 (13)	0.3284 (13)	0.0845 (8)	0.108
C33	0.1642 (18)	0.3787 (17)	0.0707 (9)	0.137
C34	0.1580 (21)	0.4352 (19)	0.1385 (13)	0.164
(3)	0.3894 (18)	0.4191 (19)	0.1316 (10)	0.127
010	0.4416(23)	0.5202(22)	0.0935(14)	0.184
C3/	0.2444(17) 0.2221(26)	0.2803(1/)	0.0038 (11)	0.135
C 30	0.3331(20) 0.2224(20)	0.2268 (23)	0.0018(13) 0.1305(11)	0.221
C40	0.2224 (20) 0.0951 (24)	0.2300(19) 0.1378(21)	0.1303(11) 0.0939(13)	0.132
~ 1 0	0.0721 (47)	0,10,0 (41)	0.0737 (13)	0.1/0

"See footnote a in Table II.

by space group symmetry to reside on a crystallographic inversion center. The three adducts are quite similar, and all contain the Fe_6S_6 prismane core. The Fe_3S_3 hexagonal cross sections of this core have a "chair" conformation and serve as tridentate ligands for $Mo(CO)_3$ structural subunits in II and IV and for $W(CO)_3$ subunits in III. The centrosymmetric octanuclear $M_2Fe_6S_6$ core, which forms following the addition of the $M(CO)_3$ fragments to a Fe₆S₆ unit, show a distorted M₂Fe₆ cube with a μ_4 -S²⁻ ligand occupying a position above the center of each of the six faces. The rhombic dodecahedral core $(D_{3d}$ symmetry) also is found in the

pentlandite type of solids such as Co₉S₈²⁸ and (Ni,Fe)₉S₈²⁹ and in molecular clusters such as $[Co_8S_6(SPh)_8]^{4-30}$ and $[Fe_8S_6I_8]^{3-31}$ and has been described previously.²⁷ The structural details of the adducts reported in this paper (Table VI) resemble closely those of the haloprismane adducts that have been described in detail previously.²⁷ Particular features that must be reemphasized include the following. (a) The Fe_6S_6 cores in the aryloxy prismane adducts are elongated along the idealized $\overline{6}$ axis, relative to the cores in the parent prismanes. (b) The Mo-Fe and Mo-S distances in the trianionic (oxidized) adducts are slightly shorter than those of the tetraanionic adducts. (c) The Fe-Fe distances in either the hexagonal or rhombic faces of the Fe_6S_6 cores in the adducts are similar to those in the parent prismanes. The Mo-S distances in the aryloxy adducts are slightly longer than those in the halo analogues and perhaps indicate a more oxidized Mo and a more reduced Fe_6S_6 core in the halo adducts. This finds support in the Mossbauer spectra of the adducts (vide infra).

Electronic Structure. Systematic changes in the electronic structures of the Fe₆S₆ cores, brought about by the addition of the $M(CO)_3$ units, are evident in comparative spectroscopic studies of the parent prismanes and their adducts. The origin of these changes can be probed further by analyzing the pronounced substituent effects observed when para-substituted phenoxide ligands are used as terminal ligands for the Fe_6S_6 prismanes.

Mössbauer Spectra. The Mössbauer isomer shift (IS) values for the new para-substituted $[Fe_6S_6(p-RPhO)_6]^{3-}$ clusters (Table VII) are similar to those reported previously for other similar clusters and can be regarded as characteristic for $(Fe_6S_6)^{3+}$ cores, with phenoxide terminal ligands and the iron atoms in a +2.5formal oxidation state. An increase in the electron-releasing strength of the para substituents in the $[Fe_6S_6(p-RPhO)_6]^3$ clusters correlates with a slight increase in the Mössbauer IS values and may indicate a slight increase of electron density in the Fe_6S_6 cores. The significance of this correlation is only marginal in view of the fact that no such correlation is detected in the Mössbauer spectra of the $\{Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2\}^{3-,4-}$ clusters.

The IS values of the $\{Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2\}^{3-}$ clusters are (Table VII) smaller than those of the $\{Fe_6S_6L_6[Mo(CO)_3]_2\}^{3-1}$ halo analogues²⁷ (L = Cl, Br, I). Similar differences in IS values, which are attributed to differences in the type of terminal ligands, already have been found for the $(Fe_4S_4L_4)^{2-}$ cubanes³² and the $(Fe_2S_2L_4)^{2-}$ dimers.³³

The IS values of the $[Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2]^{3-}$ clusters are significantly greater than those of the corresponding $[Fe_6S_6(p-RPhO)_6]^{3-}$ "parent" prismanes and indicate that in the former the average formal oxidation state of the Fe atoms is lower than that in the latter. The apparent partial reduction of the $Fe_{\kappa}S_{\kappa}$ cores in the $[Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2]^{3-}$ clusters is possible only with a concomitant partial oxidation of the Mo atoms in the $Mo(CO)_3$ units and may well be due to direct $Mo \rightarrow Fe$ charge transfer.

The $\{Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2\}^{4-}$ clusters, obtained by reduction of the corresponding trianions, show IS values that are greater than those of the trianions by ~ 0.07 mm/s. As discussed previously,²⁷ a change in the oxidation level of the Fe_6S_6 core by a unit charge would be expected to change the ⁵⁷Fe IS values approximately by (1/6)0.45 or 0.075 mm/s. The observed changes suggest that in the reduced aryloxy adducts a significant portion of the added charge resides in the Fe_6S_6 cores. Unexpectedly, the implied reduction in the average Fe oxidation level in the tetraanionic adducts is not evident in significant structural differences in the Fe₆S₆ cores of the $[Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2]^{n-1}$

- (28) Rajamani, V.; Prewitt, C. T. Can. Mineral. 1975, 13, 75.
 (29) Rajamani, V.; Prewitt, C. T. Can. Mineral. 1973, 12, 178.
 (30) Christou, G.; Hagen, K. S.; Bashkin, J. K.; Holm, R. H. Inorg. Chem. 1985, 24, 1010.
- Pohl, S.; Saak, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 907.
- (32) Kanatzidis, M. G.; Coucouvanis, D.; Simopoulos, A.; Kostikas, A.; Papaefthymiou, V. J. Am. Chem. Soc. 1985, 107, 4925.
- (a) Salifoglou, A.; Simopoulos, A.; Kostikas, A.; Dunham, R. W.; Ka-natzidis, M. G.; Coucouvanis, D. Inorg. Chem. 1988, 27, 3394. (b) Salifoglou, A. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, 1987.

...

able VI.	Summary of In	teratomic Distances	(A) and Angles (deg) for	$(Et_4N)_3[Fe_6S_6(p-OMeP)]$	hO_{6} (I),
$Et_4N_3 Fe$	$e_6S_6(p-OMePhC)$	$D_{6}[Mo(CO)_{3}]_{2}(II),$	$(Et_4N)_3$ $Fe_6S_6(p-1)$	MePhO)	$_{6}[W(CO)_{3}]_{2}$ (III), and	$(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$ (IV)

	I	11	111	1V
		Distances ^{a,b}		
$Mo(W)-Fe^{a}$		2.99 (2, 3)	2.96 (2, 3)	3.00 (2, 3)
range		2.954 (1)-3.028 (1)	2.931 (2)-2.976 (2)	2.969 (2)-3.016 (2)
Mo(W)-S		2.614 (5, 3)	2.590 (3, 3)	2.646 (8, 3)
range		2.605 (2)-2.619 (2)	2.589 (3)-2.590 (3)	2.639 (3)-2.659 (3)
Mo(W)-C		1.94(2, 3)	1.97(3, 3)	1.92(3,3)
$\frac{\text{Tange}}{\text{Eq. Eq(ag)}}$	2 8 20 (0 6)	1.92(1) - 1.98(1)	1.94 (1)~2.01 (1)	1.88(1) - 1.96(1)
range	3.829(9, 6) 3.806(5)-3.863(5)	3.82(1, 3) 3.797(2)-3.835(2)	3.806 (9, 3) 3.794 (2)-3.820 (3)	3.78(2, 3) 3.754(2) = 3.815(2)
$\frac{Fe-Fe(ax)^{c}}{Fe-Fe(ax)^{c}}$	2 78 (1, 6)	2 80 (2 3)	2.791(3,3)	2.79(2)
range	2.752 (5)-2.825 (5)	2.779(2)-2.823(2)	2.786(3) - 2.796(3)	2.746(2)-2.789(2)
Fe-S(eq)	2.289 (7, 12)	2.291 (4, 6)	2.284 (4, 6)	2.288 (4, 6)
range	2.267 (7)-2.320 (7)	2.282 (2)-2.304 (2)	2.273 (4)-2.297 (4)	2.275 (3)-2.301 (3)
Fe-S(ax)	2.309 (7, 6)	2.341 (3, 3)	2.338 (6, 3)	2.348 (4, 3)
range	2.302 (6)-2.315 (7)	2.339 (3)-2.342 (3)	2.331 (3)-2.348 (3)	2.341 (3)-2.352 (3)
S-S(eq)	3.80(2, 6)	3.88(5, 6)	3.82(2, 6)	3.85(3, 6)
$\frac{1}{S-S(nx)}$	3.730 (0)=3.043 (0)	3.621(3) = 3.971(3)	3.790(4) = 3.844(5)	3.813(4) = 3.884(4)
range	3.613(8) - 3.699(8)	3.667(2) - 3.709(2)	3.681(4) - 3.689(4)	3.675(4) - 3.745(4)
Fe-O	1.87 (1, 6)	1.85 (1, 3)	1.85 (1, 3)	1.912 (8, 3)
range	1.85 (2)-1.89 (2)	1.831 (7)-1.866 (6)	1.830 (8)-1.858 (9)	1.911 (8)-1.915 (8)
O-C(Ph)	1.34 (2, 6)	1.32 (1, 3)	1.31 (4, 3)	1.27 (2, 3)
range	1.30 (2)-1.38 (3)	1.30 (1)-1.33 (1)	1.24 (1)-1.36 (1)	1.26 (2)-1.30 (1)
		Angles		
Fe-Mo(W)-Fe		79.5 (1, 3)	80.2 (1, 3)	78.3 (3, 3)
range		79.3 (1)-79.6 (1)	80.1 (1)-80.2 (1)	77.8 (1)-78.6 (1)
S-Mo(W)-S		94.1 (9, 3)	94.9 (6, 3)	93.4 (6, 3)
	(0,0,(2,1))	92.8(1) - 95.3(1)	94.0 (1)-95.8 (1)	92.5(1)-94.3(1)
range	59.3(1)-60.6(1)	59.4(1) - 60.4(1)	50.0(2, 3) 59.7(1)-60.4(1)	59.3(1) - 60.9(1)
Fe-S-Fe(eq)	113.6 (6, 6)	1129(8-3)	1128 (8 3)	1114(9,3)
range	112.1 (3)-115.4 (3)	111.7(1)-114.1(1)	111.7(1)-114.0(2)	110.1 (1)-112.8 (1)
Fe-S-Fe(ax)	74.5 (3, 12)	74.4 (3, 6)	74.3 (1, 6)	73.8 (5, 6)
range	72.9 (2)-76.1 (6)	73.5 (1)-75.2 (1)	73.9 (1)-74.6 (1)	72.4 (1)-75.2 (1)
S-Fe-S(eq)	112.3 (5, 6)	113.2 (7, 3)	113.2 (4, 3)	114.6 (8, 3)
range	110.2(3) - 113.4(3)	112.1(1)-114.0(1)	112.7(1) - 114.0(1)	113.7 (1)-115.8 (1)
S-Fe-S(ax)	105.5(3, 12) 103.9(2) - 106.9(2)	105.6(3, 6) 104.8(1) - 106.5(1)	105.7(1, 6) 105.4(1) = 105.9(1)	106.2 (5, 6) 105.0 (1) - 107.8 (3)
$\overline{\Omega - \text{Fe} - S(e_0)}$	103.9(2) 100.9(2) 110.8(10, 12)	104.0(1) $100.0(1)$	111 1 (5 6)	109 (1 6)
range	106.6(5) - 118.0(5)	106.0(1) - 116.0(1)	109.5(2) - 112.9(3)	105(1,0) 105.1(1)-112.3(1)
O-Fe-S(ax)	112 (2, 6)	109.4 (4, 3)	109.7 (4, 3)	112.3 (4, 3)
range	111.7 (5)-116.7 (5)	108.9 (1)-110.0 (1)	109.1 (2)-110.2 (2)	111.8 (1)-112.9 (1)
Fe-O-C(Ph)	133 (3, 6)	136.3 (7, 3)	140 (9, 3)	138 (5, 3)
range	129 (1)-143 (2)	129.9 (6)-146.1 (7)	130.3 (9)-153.9 (9)	133.4 (8)-146 (1)

^a Mean values of crystallographically independent, chemically equivalent, structural parameters. The number in parentheses represents the larger of the individual standard deviations or the standard deviation from the mean: $\sigma = [\sum_{i=1}^{N} (x_i - \bar{x})^2/N(N-1)]^{1/2}$. ^b In I: For cation N1 the N–C bonds are in the range 1.53 (3)–1.45 (3) Å with a mean value of 1.51 (4) Å. The C–C bonds are in the range 1.58 (3)–1.47 (3) Å with a mean of 1.53 (5) Å. For cation N2, the N–C bonds are in the range 1.54 (3)–1.47 (3) Å with a mean of 1.52 (3) Å. The C–C bonds are within the range 1.54 (3)–1.48 (3) Å with a mean value of 1.51 (3) Å. The Cation N3 shows the N–C bonds within the range 1.56 (3)–1.49 (3) Å with a mean value of 1.52 (3) and the C–C bonds in the range 1.54 (3)–1.48 (4) Å with a mean value of 1.51 (3) Å. In II: For cation N1 the N–C bonds are within the range 1.510 (11) to 1.506 (11) Å with a mean value of 1.51 (1) Å. The C–C bonds are within the range 1.51 (1)–1.48 (2) Å with a mean value of 1.50 (1) Å. For the disordered cation N2, the N–C bonds are within the range 1.60 (2)–1.46 (2) Å with a mean value of 1.5 (1) Å. The C–C bonds range from 1.53 (3)–1.51 (3) Å with a mean value of 1.52 (3) Å. For III: Cation N1, N–C range = 1.48 (2)–1.53 (2) Å, mean N–C = 1.51 (2) Å, C–C range = 1.48 (4)–1.51 (2) Å, mean C–C = 1.50 (4) Å; disordered cation N2, N–C range = 1.48 (2)–1.53 (2) Å, mean N–C = 1.56 (6) Å, C–C range = 1.53 (4)–1.62 (5) Å, mean C–C = 1.56 (5) Å. For IV: Cation N1, N–C range = 1.51 (1)–1.49 (1) Å, mean = 1.50 (1) Å, C–C range = 1.53 (2)–1.48 (2) Å, mean C–C = 1.50 (2) Å; cation N2, C–N range = 1.53 (2)–1.47 (2) Å, mean N–C = 1.49 (2) Å, C–C range = 1.57 (3)–1.46 (2) Å, mean C–C = 1.50 (5) Å. The designations ax (axial) and eq (equatorial) are with reference to the idealized 6-fold axis in the structures of the anions. Distances or angles designated "equatorial" are found within the two hexagonal Fe₃S₃ structural subunits. Those designated as "axial" are found within the six rhombic Fe

adducts (n = 3 vs n = 4). Instead, the reduction affects significantly the Mo(CO)₃ units. A partial reduction of the Mo(CO)₃ units is evident in longer Mo-S and Mo-Fe distances (Table VI) and in lower C-O vibrational frequencies (vide infra) in the reduced, tetraanionic, (aryloxy)prismane adducts. Similar effects have been observed previously with the haloprismane adducts, the added electron enters an antibonding molecular orbital that has considerable Mo, Fe, and S character.

Electronic Spectra. As indicated above (Table VII), Mössbauer spectroscopy is rather insensitive to small perturbations in the electronic structure of the (aryloxy)prismanes and adducts. In contrast, the prismane clusters and their adducts show electronic absorptions in the visible and infrared regions of the spectrum (Table VIII) that are very sensitive to phenyl ring-substituent effects.

The $O \rightarrow$ Fe charge-transfer absorptions are found at lower energies as the electron-releasing effect of the para substituents

Table VII. 57 Fe Mössbauer Parameters for $[Fe_6S_6(p-XPhO)_6|Mo(CO)_3]_2]^n$, $[Fe_6S_6(p-XPhO)_6]^{3-}$ (n = 3, X = Me, OMe, NMe₂; n = 4, X = Me, OMe, COMe), and $(Et_4N)_3$ $Fe_6S_6(p-MePhO)_6[W(CO)_3]_2$

cluster	temp, K	IS (δ), mm/s	$\Delta Eq,$ mm/s
$\overline{(Et_4N)_3}Fe_6S_6(p-MeOPh)_6[Mo(CO)_3]_2}$	125	0.532	0.845
$(Et_4N)_3[Fe_6S_6(p-OMeOPh)_6[Mo(CO)_3]_2]$	125	0.551	0.800
$(Et_4N)_3[Fe_6S_6(p-NMe_2OPh)_6[Mo(CO)_3]_2]$	125	0.544	0.739
$(Et_4N)_4[Fe_6S_6(p-MeOPh)_6[Mo(CO)_3]_2]$	125	0.60	1.04
$(Et_4N)_4[Fe_6S_6(p-OMeOPh)_6[Mo(CO)_3]_2]$	125	0.616	0.867
$(Et_4N)_4 [Fe_6S_6(p-COMeOPh)_6[Mo(CO)_3]_2]$	125	0.620	1.02
$(Et_4N)_3$ {Fe ₆ S ₆ (<i>p</i> -MeOPh) ₆ [W(CO) ₃] ₂ }	125	0.581	0.74
$(Et_4N)_3[Fe_6S_6(p-MeOPh)_6]$	125	0.477	1.016
$(Et_4N)_3[Fe_6S_6(p-OMeOPh)]$	125	0.496	1.016
$(Et_4N)_3[Fe_6S_6(p-NMe_2OPh)_6]$	125	0.512	0.979

increases from -COMe to -Me to -NMe₂. In comparison to the corresponding parent prismanes, the 3- prismane adducts show a bathochromic shift in the $O \rightarrow Fe$ charge-transfer absorption by \sim 40 nm. It seems that addition of the Mo(CO)₃ units to the prismanes indirectly lowers the energy of the $O \rightarrow Fe$ charge transfer by withdrawing π -electron density from the μ_3 -S donor atoms. In the spectra of the 4- adducts, a hypsochromic shift of the O \rightarrow Fe charge transfer by 30-40 nm is observed by comparison to the 3- adducts (Table VIII). This electronic effect is as expected since, in the 4- adducts, partial reduction of the Mo atoms will weaken the μ_2 -S-Mo π bonding and at the same time strengthen the μ_2 -S-Fe π bonding. The net result will be a weakening of O-Fe π bonding that leads to the hypsochromic shift of the $O \rightarrow Fe$ charge-transfer bands in the 4- adducts.

Infrared Spectra. As expected for the C_{3v} local symmetry of the $M(CO)_3$ units in the prismane adducts, two sharp C-O vibrations $(A_1 + E)$ are observed in the infrared spectra between 1915 and 1800 cm⁻¹. These are 20-30 cm⁻¹ lower in energy than the C-O doublets in the IR spectra of the (1,4,7-trithiacyclononane) $Mo(CO)_3$, ^{34,35} (Et₂S)₃ $Mo(CO)_3$, ³⁶ (C₄H₈S)₃ $Mo(CO)_3$, ³⁶ and $(Ph_3P)_3Mo(CO)_3^{37}$ complexes. In the far-IR spectra of the (aryloxy)prismane adducts, two medium-intensity bands in the 450-480-cm⁻¹ region are assigned to the Mo-C A_1 and E stretching vibrations. The frequencies of these vibrations for the W adduct (462 and 480 cm⁻¹) are higher than those of the corresponding Mo complex (457 and 474 cm⁻¹). Similar differences in energies of the M-C vibrations in M(CO)₃ units (Mo vs W) have been reported previously for Mo and W η^6 -benzene³⁸ and mesitylene complexes.³⁸ These differences follow the reverse order observed for the difference in frequencies of the carbonyl stretching vibrations ($\nu_{CO}(Mo) > \nu_{CO}(W)$ and are due to the lower oxidation potential of W(0) compared to Mo(0).

In the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{n-1}$ adducts (n = 3, 4), the C-O frequencies are found 30-40 cm⁻¹ lower in energy than those for corresponding halo complexes. It seems that the Mo atoms in the haloprismane adducts are less "electron rich" than the corresponding aryloxy clusters. The greater partial reduction of the Mo atoms in the aryloxy clusters is due to more effective $O \rightarrow Fe_6S_6 \rightarrow Mo$ charge transfer through π bonding and also is apparent in the lower values for the isomer shifts (and more oxidized Fe atoms) in these clusters.

The reduced, 4-, aryloxy adducts show the C-O vibrations 40-50 cm⁻¹ lower in energy than those for the corresponding 3adducts and suggest more reduced Mo atoms in the former. This also is evident in crystallographically determined structural differences (Mo-S distances) between the 3- and 4-adducts (vide supra). The C-O stretching frequencies in the (aryloxy)prismane adducts are affected by the type of the phenyl para substituents

Figure 3. Cyclic voltammetric trace of $(Et_4N)_3$ Fe₆S₆(*p*-EtPhO)₆[M- $(CO)_{3}_{2}$ in CH₂Cl₂ solution. Qualitatively similar waves are obtained for other members of the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{n-1}$ series.

and are found at lower energies with the more electron-releasing substituents. Apparently, an excess of electron density is transmitted to the Mo atom and the C-O π^* orbitals by a pathway already described. The common origin of the changes in the electronic and infrared spectra, in the type of para substituent, is evident in nearly linear correlations between the CT absorption energies in the electronic spectra and the C-O vibrational frequencies (Table VIII).

In the absence of an excess of (CH₃CN)₃Mo(CO)₃ the product obtained in the synthesis of II shows an additional doublet of C==O absorptions at 1880 and 1800 cm⁻¹. An examination of the latter product by proton NMR spectroscopy (vide infra) shows two sets of isotropically shifted resonances for the o-, m-, and p-CH₃ protons. One set consists of singlets and is due to the $\{Fe_6S_6(p MePhO_{6}[Mo(CO)_{3}]_{2}]^{3-}$ 2:1 adduct. The other set consists of doublets and is tentatively assigned to the $\{Fe_6S_6(p-MePhO)_6-$ [Mo(CO)₃]}³⁻ 1:1 adduct.

Electrochemical Measurements. The cyclic voltammetry of the adducts was studied in CH₂Cl₂ solution on a Pt electrode with $(Bu_4N)ClO_4$ as supporting electrolyte. The $\{Fe_6S_6(p-RPhO)_6 [Mo(CO)_3]_2$ ^{3-,4-} clusters show two one-electron reversible waves (Figure 3) in cyclic voltammetry that correspond to the 3-/4and 4-/5-redox couples. An irreversible cathodic wave also is observed around -1.50 V. A multielectron irreversible oxidation is observed for the (aryloxy)prismane adducts at potentials centered around +0.25 V. The products of this oxidative degradation have not been characterized to date.

The potential of the first of the two voltammetric waves (Table IX) is significantly affected by the nature of the para substituents on the aryloxy ligands. With electron-releasing groups, such as -Me, -OMe, and $-NMe_2$, the redox couple is found (vide infra) at potentials more negative than -0.25 V. With the electronwithdrawing -COMe, the 3-/4- couple is found at a potential low enough (-0.16 V) to allow for the chemical reduction of the 3- adduct by (CH₃CN)₃Mo(CO)₃. This accounts for the formation of the $[Fe_6S_6(p-COMePhO)_6[M(CO)_3]_2]^{4-}$ adduct in a procedure that with other (electron releasing) substituents affords only the 3- adducts. Addition of the appropriate stoichiometric amount of arenethiols to solutions of the $\{Fe_6S_6(p-RPhO)_6[Mo (CO)_{3}_{2}^{3-}$ clusters generates in situ the corresponding arenethiolate adducts. The chemically unstable $\{Fe_6S_6(PhS)_6[Mo(CO)_3]_2\}^{3-1}$ adduct obtained in this fashion shows two one-electron reversible waves with $E_{1/2}$ values of -0.25 and -0.70 V. Slightly more positive redox potentials for the thiophenolate analogues also have been detected previously for the $[Fe_6S_6(PhX)_6]^{3-}$ prismanes and the $[Fe_4S_4(PhX)_4]^{2-}$ cubanes (X = O, S).

Substitution of Mo by W slightly shifts the redox couple of the first wave to more negative potentials. Similar shifts have been encountered previously in the double cubane clusters¹⁴ and the $[(PhS)_2FeS_2MS_2]^{2-}$ and $[(S_5)_2FeS_2MS_2]^{2-}$ complexes.¹³

Proton NMR Spectra. The high-spin tetrahedral Fe centers in the $\{Fe_6S_6(p-RPhO)_6[M(CO)_3]_2\}^{3-4-}$ (M = Mo, W) clusters are antiferromagnetically coupled. The trianions are characterized by an $S = \frac{1}{2}$ spin ground state and their EPR spectra that can be obtained only at a temperature <15 K resemble those of the

 ⁽³⁴⁾ Ashby, M. T.; Lichtenberger, D. L. Inorg. Chem. 1985, 24, 636-638.
 (35) Backes-Dahmann, G.; Wieghardt, K. Inorg. Chem. 1985, 24, 4049-4054.

⁽³⁶⁾ Cotton, F. A.; Zingales, F. Inorg. Chem. 1962, 1, 145.
(37) Abel, E. W.; Bennett, M. A.; Wilkinson, G. J. Chem. Soc. 1959, 2323.
(38) Kettle, S. F. A. The Vibrational Spectra of Metal Carbonyls. Top. Curr. Chem. 1977, 71, 112.

Table VIII. Infrared and UV/Visible Electronic Spectral Data for $\{Fe_6S_6(p-XPhO)_6[Mo(CO)_3]_2]^{\mu-}$, $[Fe_6S_6(p-XPhO)_6]^{3-}$ ($n = 3, X = Me, OMe, Particular (Mathematical Spectral Data for <math>\{Fe_6S_6(p-XPhO)_6]^{3-}$). NMe₂; n = 4, X = Me, OMe, COMe), and $(Et_4N)_3[Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]$ in CH₃CN Solution

cluster	$\nu_{\rm CO}, {\rm cm}^{-1}$	νMC, cm ⁻¹	λ, nm	ϵ , M ⁻¹ cm ⁻¹	
$(Et_4N)_3[Fe_6S_6(p-MePhO)_6[Mo(CO)_3]_2]$	1916, 1865	474, 457	468	18 1 30	
$(Et_4N)_3$ $Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2$	1911, 1854	477, 469	480	17410	
$(Et_4N)_3$ {Fe ₆ S ₆ (p-NMe ₂ PhO) ₆ [Mo(CO) ₃] ₂ }	1909, 1854	479, 461	520	18 7 50	
$(Et_4N)_4$ $Fe_6S_6(p-MePhO)_6[Mo(CO)_3]_2$	1885, 1805	483, 460	426	15 670	
$(Et_4N)_4[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$	1882, 1797	485, 461	420	14990	
$(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$	1897, 1832	477, 459	436	14 530	
$(Et_4N)_3[Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]$	1909, 1855	480, 462	470	20 3 20	
$(Et_4N)_3[Fe_6S_6(p-MePhO)_6]$			427	19720	
$(Et_4N)_1[Fe_6S_6(p-OMePhO)_6]$			443	17 280	
$(Et_4N)_3[Fe_6S_6(p-NMe_2PhO)_6]$			490	19 330	

Table IX. Cyclic Voltammetry Data^a for the Et₄N⁺ Salts of the $\{Fe_8S_6(p-XPhO)_6[Mo(CO)_3]_2\}^{p-}$, $[Fe_6S_6(p-XPhO)_6]^{3-b}$ (n = 3, X = Me, OMe, Particular (Ne) = 1, Ne)NMe₂; n = 4, X = Me, OMe, COMe), and {Fe₆S₆(p-MePhO)₆[W(CO)₃]₂]³⁻ Anions in CH₂Cl₂ Solution^c

	. 53 2/				
$3-/4-E_{1/2}, \mathrm{mV}$	$\Delta E, mV$	$i_{\rm pa}/i_{\rm pc}$	$4-/5-E_{1/2}, \mathrm{mV}$	$\Delta E, mV$	i _{pa} /i _{pc}
-0.29	110	1.0	-0.87	103	0.96
-0.31	130	1.0	-0.87	130	0.93
-0.40	110	0.96	-0.91	110	0.93
-0.16	100	0.90	-0.67	130	0.96
-0.38	141	0.96	-0.87	130	0.96
-0.22	110	0.96	-1.17	160	0.85
-0.32	150	0.96	-1.27	170	0.85
	$ \frac{3-/4-E_{1/2}, \text{ mV}}{-0.29} \\ -0.31 \\ -0.40 \\ -0.38 \\ -0.22 \\ -0.32 $	$\begin{array}{c ccccc} \hline 3-/4-E_{1/2}, \mbox{ mV } & \Delta E, \mbox{ mV } \\ \hline -0.29 & 110 \\ -0.31 & 130 \\ -0.40 & 110 \\ -0.16 & 100 \\ -0.38 & 141 \\ -0.22 & 110 \\ -0.32 & 150 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^a For all measurements, the scan rate was 200 mV/s. ^b The first potential refers to the 2-/3- redox couple and the second potential refers to the 3-/4- one. The potentials are reported vs SCE. Normally, the (Et₄N)⁺ salts of the above clusters are not soluble in CH₂Cl₂. In the presence of excess (n-Bu₄N)ClO₄ as supporting electrolyte, they readily go into solution.

Figure 4. ¹H NMR spectra (ppm) of the Et_4N^+ salts of the $\{Fe_6S_6(p-1)\}$ $RPhO_{6}[Mo(CO)_{3}]_{2}]^{3-}$ clusters in CD₃CN solution: (A) R = $-NMe_{2}$; (B) R = -OMe.

 $[Fe_6S_6(ArO)_6]^{3-}$ prismanes. The corresponding tetraanions are EPR silent and possess an integer spin state.

The ¹H NMR spectra of the (aryloxy)prismane adducts (Figure 4) have been measured in deuterated acetonitrile solutions at room temperature. In addition to the resonances due to the tetraethylammonium cations, isotropically shifted resonances due to the phenoxide protons also are observed. The room-temperature resonances in ppm are given in Table X. The pattern of alternating signs of the isotropic shifts of the aryl proton resonances is similar to those observed for $[Fe_2S_2(ArO)_4]^{2-,39}$ $[Fe_4S_4-(ArO)_4]^{2-,40}$ and $[Fe_6S_6(ArO)_6]^{3-19}$ and is typical for M-X-Ar (X = S, O, Se) paramagnetic complexes. It has been attributed previously to dominant Fermi contact interactions (π delocalization mechanism), with negligible pseudocontact contributions.⁴¹

The ortho proton resonances are shifted to higher fields (relative to the diamagnetic phenoxy phenol) while the meta protons are shifted to lower fields. The ortho proton resonances, as observed previously in the aryloxy Fe_6S_6 prismanes, the Fe_4S_4 cubanes, and the Fe_2S_2 dimers, are identified by their relative broadness that is due to electronic spin relaxation effects, induced by their

Figure 5. ¹H NMR spectra (ppm) of the Et_4N^+ salts of the $[Fe_6S_6(p (A) R = -NMe_2$; (B) $R = -NME_2$; (B) R = -N-OMe.

Figure 6. ¹H NMR spectra (ppm) of the Et_4N^+ salts of the $|Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2|^4$ clusters in CD₃CN solution: (A) R = -COMe; (B) R = -Me; (C) $\ddot{R} = -OMe$.

proximity to the paramagnetic centers.

The isotropic shifts observed for the (aryloxy)prismane adducts are greater in magnitude than those of the $[Fe_6S_6(ArO)_6]^{3-}$ parent prismanes (Figure 5), the $[Fe_2S_2(ArO)_4]^{2-}$ dimers, or the $[Fe_4S_4(ArO)_4]^{2-}$ clusters. This observation suggests that there is more contact between the ring protons and the paramagnetic centers in the Fe_6S_6 cores of the adducts, and accordingly may

⁽³⁹⁾ (a) Coucouvanis, D.; Salifoglou, A.; Kanatzidis, M. G.; Simopoulos, A.; Papaefthymiou, V. J. Am. Chem. Soc. 1984, 106, 6081. (b) Cleland, W. E.; Averill, B. A. Inorg. Chem. 1984, 23, 4192.
(40) Cleland, W. E.; Holtman, D. A.; Sabat, M.; Ibers, J. A.; Defotis, G. C.;

 ⁽¹⁾ Averill, B. A. J. Am. Chem. Soc. 1983, 105, 6021.
 (41) (a) Holm, R. H.; Phillips, W. D.; Averill, B. A.; Mayerle, J. J.; Herskovitz, T. J. Am. Chem. Soc. 1974, 96, 2109. (b) Reynolds, J. G.; Laskowski, E. J.; Holm, R. H. J. Am. Chem. Soc. 1978, 100, 5315.

Table X. ¹H NMR Spectral Data for the Et₄N⁺ salts of the $[Fe_6S_6(p-RPhO)_6[Mo(CO)_3]_2]^n$, $[Fe_6S_6(p-RPhO)_6]^{3-b}$ ($n = 3, R = Me, OMe, NMe_2; n = 4, R = Me, OMe, COMe)$, and $[Fe_6S_6(p-MePhO)_6[W(CO)_3]^2]$ Anions in CD₃CN Solution

	c	hem shift, ppm $((\Delta H/H_0)_i)$	_{so}) ^a
cluster	<i>o</i> -H	<i>m</i> -H	p-R
$(Et_4N)_3$ [Fe ₆ S ₆ (p-MePhO) ₆ [Mo(CO) ₃] ₂]	-3.0 (9.8)	14.47 (-7.67)	1.8 (-9.55)
$(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$	-3.38 (10.12)	13.97 (-7.23)	4.69 (-0.97)
	-1.00, -0.97	12.77, 12.43	4.49, 4.45
$(Et_4N)_3$ {Fe ₆ S ₆ (p-NMe ₂ PhO) ₆ [Mo(CO) ₃] ₂ }	-3.06 (9.71)	14.06 (-7.41)	5.0 (-2.3)
	$-1.05, -1.10^{b}$	12.82, 12.51 ^b	4.39, 4.35 ^b
$(Et_4N)_4[Fe_6S_6(p-MePhO)_6[Mo(CO)_3]_2]$	-3.56 (10.36)	15.76 (-8.96)	12.86 (-10.61)
$(Et_4N)_4 \{Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2\}$	-4.03 (10.77)	15.29 (-8.55)	4.72 (-1.0)
$(Et_4N)_4[Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2]$	-0.55 (7.91)	15.55 (-8.19)	3.27 (-0.79)
$(Et_4N)_3[Fe_6S_6(p-MePhO)_6[W(CO)_3]_2]$	-3.42 (10.22)	14.79 (-7.99)	12.31 (-10.06)
$(Et_4N)_3[Fe_6S_6(p-MePhO)_6]$	1.28 (5.52)	12.0 (-5.2)	8.32 (-6.07)
$(Et_4N)_3[Fe_6S_6(p-OMePhO)_6]$	1.32 (5.42)	11.62 (-4.88)	4.33 (-0.61)
$(Et_4N)_3[Fe_6S_6(p-NMe_2PhO)_6]$	1.25 (5.4)	11.75 (-5.1)	4.05 (-1.35)

 $^{a}(\Delta H/H_{0})_{iso} = (\Delta H/H_{0})_{diam} - (\Delta H/H_{0})_{obsd}$ measured in CD₃CN solution at room temperature. Shifts vs diamagnetic references: *p*-CH₃C₆H₄OH, 6.8, 2.25 ppm (CH₃); *p*-CH₃OC₆H₄OH, 6.74, 3.72 ppm (CH₃), *p*-CH₃COC₆H₄OH, 7.36, 2.48 ppm (CH₃), *p*-N(CH₃)₂C₆H₄OH, 6.65, 2.7 ppm (CH₃). ^b Resonances (ppm) due to the {Fe₆S₆(*p*-RPhO)₆[Mo(CO)₃]}^{3-1:1} adducts.

indicate that the Fe--O bond in the latter has more covalent character than that in the parent prismanes.

By comparison to the trianionic adducts that have an S = 1/2ground state, the tetraanionic adducts (with an integer spin ground state), at NMR probe temperatures (ca. 37 °C), show (Figure 6) even larger shifts than the trianionic adducts. Thus in $(Et_4N)_3[Fe_6S_6(p-OMePhO)_6[Mo(CO)_3]_2]$ the o-H, m-H and p-OMe proton signals are observed at -3.38, 13.97, and 4.69 ppm, respectively. In the tetraanionic adduct, those resonances are observed at -4.03, 15.29, and 4.72 ppm.

The o-H, m-H, and p-CH₃ signals in the {Fe₆S₆(p-MePhO)₆-[Mo(CO)₃]₂]³⁻ adduct at -3.00, 14.47, and 11.88 ppm correspond to isotropic shifts of 9.80, -7.67, and -9.55 ppm. The low-field shift of the p-Me resonance is consistent with the assumption that π -electron spin density at that position leads to a direct contact interaction with the methyl protons through hyperconjugation. Similar arguments can be advanced to explain the isotropic shifts observed in the p-OMe and p-NMe₂ substituents.

For each resonance observed for the o-H, m-H, and p-R protons, an additional minor set of resonances (doublets) is present in the spectra of the 3- Mo(CO)₃ aryloxide adducts (Figure 4). The relative intensity of this set of doublets increases upon addition of [Fe₆S₆(p-RPhO)₆]³⁻, and decreases upon addition of (CH₃C-N)₃Mo(CO)₃. These observations are consistent with the equilibrium

$$\{Fe_{6}S_{6}(p-RPhO)_{6}[M(CO)_{3}]_{2}\}^{3-} + 3CD_{3}CN \rightarrow \{Fe_{6}S_{6}(p-RPhO)_{6}[M(CO)_{3}]\}^{3-} + (CD_{3}CN)_{3}M_{0}(CO)_{3} (4)$$

and suggest that the set of doublets in the spectra are due to the 3-1:1 adduct. Upon prolonged standing, resonances that can be attributed to traces of free prismane also appear and indicate the equilibrium

$$\{Fe_6S_6(p-RPhO)_6[M(CO)_3]\}^{3-} + 3CD_3CN \rightarrow [Fe_6S_6(p-RPhO)_6]^{3-} + (CD_3CN)_3M_0(CO)_3 (5)$$

With strongly electron-releasing para substituents, such as -OMe and $-NMe_2$, the intensity of the doublet signals that arise from the 1:1 adducts is nearly twice that of the 2:1 adducts and the equilibrium (eq 4) lies to the right. Indeed the synthesis of pure 1:1 adducts should be possible in noncoordinating solvents, in stoichiometric reactions between the $[Fe_6S_6(p-RPhO)_6]^{3-}$ prismanes (R = -OMe and $-NMe_2$) and $(CH_3CN)_3Mo(CO)_3$. The ¹H NMR spectra of the tetraanionic Mo(CO)₃ adducts or of the trianionic W(CO)₃ adduct do not show dissociation of M(CO)₃.

Summary and Conclusions

As with the haloprismane adducts reported previously, the (aryloxy)prismane adducts reported herein possess a Mo:Fe stoichiometry of 1:3, magnetic ground states $S = \frac{1}{2}$ and S = integer for the 3- and 4- levels, respectively, and structural features that only qualitatively resemble the Fe/Mo/S site in nitrogenase.

The ultimate purpose of our synthetic studies, to isolate 1:1 prismane adducts with Mo in high (3+ or 4+) oxidation states, and a Fe:Mo ratio of at least 6:1 still remains to be achieved. Nevertheless, this work has revealed certain aspects of Fe/Mo/S chemistry that are expected to be very useful in future synthetic studies. It is now clear that the fine details of charge distribution in the (aryloxy) prismanes and their $M(CO)_3$ adducts are determined by remote substituent effects. These details can be monitored by electronic spectroscopy. The O→Fe charge-transfer absorptions in the electronic spectra of the parent prismanes and of the M(CO)₃ adducts shift to lower energies as the electronreleasing strength of the para substituents on the phenoxy ligands increases. In the $M(CO)_3$ adducts, the frequencies of the C-O stretching vibrations also are affected predictably by the electron-releasing characteristics of the para substituents. In general, the greater the electron-releasing strength of the para substituent, the lower the frequency of the C-O vibration.

Crystallographic and Mössbauer spectroscopic studies on the (aryloxy)prismane adducts reenforce the conclusions reached earlier²⁷ in studies of the analogous haloprismane adducts. These were as follows. (a) The Fe_6S_6 cores in the adducts have undergone partial reduction when compared to the cores in the parent prismanes. (b) Oxidation-reduction of the adducts is centered primarily on the Mo atoms. The properties of the clusters reported herein show that with electron-releasing phenyl para substituents, the 1:1 (aryloxy)prismane adducts are stable and may be isolated under appropriate conditions.

The unrealistically low oxidation state of the Mo atom is another major objectionable feature of the Mo(CO)₃ prismane adducts. A 4+ formal oxidation state has been proposed for the Mo atom in nitrogenase, on the basis of ENDOR studies.⁴² A high oxidation state, (3+, 4+), for the Mo atom also is supported by the Mo-S bond lengths (~2.35 Å) derived from Mo EXAFS analyses.⁹ Preliminary studies, on oxidative decarbonylation reactions of $\{Fe_6S_6Cl_6[M(CO)_3]_2\}^{3-}$, have shown that such reactions are feasible with quinones. The product of the reaction with tetrachloro-o-quinone43 however is not a prismane adduct, but rather the known $[MoFe_3S_4Cl_3(Cl_4cat)(CH_3CN)]^{2-}$ cubane with the $[MoFe_3S_4]^{3+}$ core.¹⁴ The latter may well be a reorganization product of a $\{Fe_6S_6Cl_6[Mo(Cl_4cat)L]_2\}^-$ adduct that forms initially. The stability of such adducts may depend greatly on the nature of the terminal ligands on the Fe_6S_6 cores. The Fe_6S_6 prismanes are metastable clusters relative to the Fe_4S_4 cubanes, particularly when the iron atoms are coordinated by terminal halide or thiophenolate ligands. The stability of the Fe_6S_6 prismanes increases dramatically however with aryloxide terminal ligands. At present, we are directing our efforts toward the synthesis of 1:1 (aryl-

⁽⁴²⁾ Venters, R. A.; Nelson, M. J.; McLean, P. A.; True, A. E.; Levy, M. A.; Hoffman, B. M.; Orme-Johnson, W. H. J. Am. Chem. Soc. 1986, 108, 3487.

⁽⁴³⁾ Al-Ahmad, S. S.; Coucouvanis, D. Work in progress.

oxy)prismane adducts with Mo(CO)3 and on the oxidative decarbonylation of these compounds with quinones or alkyl peroxides.

Acknowledgment. The support of this work by a grant (GM-26671) from the National Institutes of Health is gratefully acknowledged.

Supplementary Material Available: Listings of positional and thermal parameters for $(Et_4N)_3[Fe_6S_6(p-OMePhO)_3]$ (I), $(Et_4N)_3[Fe_6S_6(p-OMePhO)_3]$ $OMePhO_{6}[Mo(CO)_{3}]_{2}$ (II), $(Et_{4}N)_{3}[Fe_{6}S_{6}(p-MePhO)_{6}[W(CO)_{3}]_{2}$ (III), and $(Et_4N)_4$ $Fe_6S_6(p-COMePhO)_6[Mo(CO)_3]_2$ (IV) (Tables S1-S4) (55 pages); listings of structure factors (Tables S5-S8) (57 pages). Ordering information is given on any current masthead page.

Contribution from the Lehrstuhl für Anorganische Chemie I der Ruhr-Universität, D-4630 Bochum. FRG. and Anorganisch-Chemisches Institut der Universität, D-6900 Heidelberg, FRG

Synthesis and Coordination Chemistry of the Hexadentate Ligands 1,4,7-Tris(2-hydroxybenzyl)-1,4,7-triazacyclononane (H_3L^1) and 1,4,7-Tris(3-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (H₃L²). Crystal Structures of [HL1CuII] and [L2FeIII]acacH

Ulf Auerbach,^{1a} Uwe Eckert,^{1a} Karl Wieghardt,^{*,1a} Bernhard Nuber,^{1b} and Johannes Weiss^{1b}

Received June 7, 1989

Two new hexadentate macrocycles containing phenolate pendant arms have been prepared from 1,4,7-triazacyclononane and 3 equiv of 2-(bromomethyl)phenyl acetate: 1,4,7-tris(2-hydroxybenzyl)-1,4,7-triazacyclononane (H₃L¹; C₂₇H₃₃N₃O₃) and 1,4,7tris(3-*tert*-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (H_3L^2 , $C_{39}H_{57}N_3O_3$). The reaction of trivalent first-row transition metals with the trianions affords monomeric pseudooctahedral complexes, of which the following have been characterized: L¹Mn^{III}; L¹Fe^{III}; L²Co^{III}; [L²Fe^{III}]acacH; L²Fe^{III}; L²Mn^{III}. The reaction of copper(II) perchlorate with the new ligands affords five-coordinate species: $HL^{1}Cu^{II}$; $[H_{2}L^{2}Cu^{II}]ClO_{4}$ (green), $[HL^{2}Cu^{II}]NaClO_{4}$ (red). $Co(BF_{4})_{2}\cdot 6H_{2}O$ reacts with $H_{3}L^{1}$ in the presence of air to give a trinuclear complex: $[(L^{1}Co^{II})_{2}Co^{II}](BF_{4})_{2}\cdot H_{2}O$. The crystal structures of $[HL^{1}Cu^{II}]$ (1) and $[L^{2}Fe^{III}]acacH$ (2), where acacH is acetylacetone, have been determined by X-ray crystallography: (1) space group $P2_{1}/n$, a = 8.687 (4) Å, b = 13.320 (9) Å, c = 20.789 (8) Å, $\beta = 102.09$ (4)°, Z = 4; (2) space group $P2_{1}/n$, a = 12.347 (9) Å, b = 18.929 (9) Å, c = 17.699 (9) Å, $\beta = 92.23$ (6)°, Z = 4. In 1 the Cu(II) center is in a square-based-pyramidal environment of three nitrogen donors and two phenolate oxygen atoms whereas the ferric ion in $\mathbf{2}$ is in a pseudooctahedral environment (N₃O₃ donor set). Electronic spectral data, magnetic properties, and the electrochemistry of the new complexes are reported.

Introduction

In recent years the tridentate, facially coordinating macrocycle 1,4,7-triazacyclononane has been repeatedly N-functionalized and a series of potentially hexadentate ligands have been synthesized and their coordination chemistry investigated.^{2,3} Chart I summarizes these ligands. In this paper we present two new such ligands, which contain phenolate pendant arms. Recently, Moore and co-workers⁴ have reported the first ligand of this kind, namely 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane, which was shown to form a stable gallium(III) complex. This work prompted us to publish our own results now. We had independently synthesized 1,4,7-tris(2-hydroxybenzyl)-1,4,7triazacyclononane (H₁L¹) and 1,4,7-tris(3-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (H_3L^2) and studied their coordination chemistry with first-row transition metals such as Fe(III), Mn(III), Co(III), and Cu(II).

Experimental Section

The ligand 1,4,7-triazacyclononane (tacn) was prepared according to published procedures.⁵ All other chemicals were obtained from commercial sources and used as received.

- (a) Ruhr-Universität Bochum. (b) Universität Heidelberg.
 Chaudhuri, P.; Wieghardt, K. Prog. Inorg. Chem. 1987, 35, 329.
 (a) Arishima, T.; Hamada, K.; Takamoto, S. Nippon Kagaku Kaishi 1973, 1119. (b) Wieghardt, K.; Bossek, U.; Guttmann, M.; Weiss, J. 1973, 1119. (b) Wieghardt, K.; Bossek, U.; Guttmann, M.; Weiss, J. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1983, 38B, 81. (c) Sayer, B. A.; Michael, J. P.; Hancock, R. D. Inorg. Chim. Acta 1983, 77, L63. (d) Gahan, L. R.; Lawrence, G. A.; Sargeson, A. M. Aust, J. Chem. 1982, 35, 1119. (e) Polikarpov, M. Yu.; Shcherbakov, B. K.; Bel'skii, F. I.; Medved, T. Ya.; Kabachnik, M. I. Izv. Akad. Nauk SSSR, Ser. Khim. 1982, 1669. (f) Christiansen, L.; Hendrickson, D. N.; Toftlund, H.; Wilson, S. R.; Xie, C. L. Inorg. Chem. 1986, 25, 2813. (g) Wieghardt, K.; Schöffmann, E.; Nuber, B.; Weiss, J. Inorg. Chem. 1986, 25, 4877. (h) DiVaira, M.; Mani, F.; Stoppioni, P. J. Chem. Soc., Chem. Commun. 1989, 126.
- Moore, D. A.; Fanwick, P. E.; Welch, M. J. Inorg. Chem. 1989, 28, (4) 1504.
- (5) Richman, J. E.; Atkins, T. J. J. Am. Chem. Soc. 1974, 96, 2268.

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small quantities of these should be handled behind suitable protective shields.

Synthesis of 1,4,7-Tris(2-hydroxybenzyl)-1,4,7-triazacyclononane (H₃L¹). To a solution of dry, finely powdered KOH (3.90 g; 66 mmol) in toluene (30 mL) was added 1,4,7-triazacyclononane (1.29 g; 10 mmol). To this solution was added dropwise a toluene solution (20 mL) of 2-(bromomethyl)phenyl acetate⁶ (6.87 g; 30 mmol) at 0 °C. The combined solutions were stirred at room temperature for 12 h. The precipitated KBr was filtered off, and the solvent was removed by evaporation under reduced pressure. To the resulting orange oil was added 0.1 M NaOH (100 mL), and the solution was stirred at 20 °C for 3 h, after which time the product was extracted from the aqueous phase with CH2Cl2 (three times with 50 mL). The combined organic phases were dried over MgSO₄. After removal of the solvent by rotary evaporation a colorless solid was obtained in 20-30% yield with respect to 1,4,7-triazacyclononane

¹H NMR (CDCl₃; δ): 6.71–7.22 (m, 12 H, phenyl), 3.74 (s, 6 H, N–CH₂–R), 2.79 (s, 12 H, N–CH₂CH₂–N). The phenolic protons were not observed. ¹³C NMR (20 °C, CDCl₃; δ): 157.3, 129.2, 129.1, 122.0, 119.4, 116.1, 62.6, 55.7. MS: m/z 447. UV-vis (CH₃CN; λ_{max}, nm (ε, L mol⁻¹ cm⁻¹)): 275 (2400), 280 (sh).

The colorless trisodium salt, Na₃L¹, was prepared from sodium methanolate and H_3L^1 (3:1) dissolved in dry methanol followed by rotary evaporation of the solvent under reduced pressure. UV-vis (CH₃CN;

0020-1669/90/1329-0938\$02.50/0 © 1990 American Chemical Society

⁽a) Range, R. Tetrahedron 1971, 27, 1499. (b) Karlin, K. D.; Cohen, (6)B. I.; Hayes, J. C.; Farooq, A.; Zubieta, J. Inorg. Chem. 1987, 26, 147.